改进的裂隙球面最大算子端点边界

IF 1.8 1区 数学 Q1 MATHEMATICS
Laura Cladek, Benjamin Krause
{"title":"改进的裂隙球面最大算子端点边界","authors":"Laura Cladek, Benjamin Krause","doi":"10.2140/apde.2024.17.2011","DOIUrl":null,"url":null,"abstract":"<p>We prove new endpoint bounds for the lacunary spherical maximal operator and as a consequence obtain almost everywhere pointwise convergence of lacunary spherical means for functions locally in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>L</mi><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>L</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>𝜖</mi></mrow></msup></math> for any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi>\n<mo>&gt;</mo> <mn>0</mn></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"253 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved endpoint bounds for the lacunary spherical maximal operator\",\"authors\":\"Laura Cladek, Benjamin Krause\",\"doi\":\"10.2140/apde.2024.17.2011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove new endpoint bounds for the lacunary spherical maximal operator and as a consequence obtain almost everywhere pointwise convergence of lacunary spherical means for functions locally in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>L</mi><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>L</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>𝜖</mi></mrow></msup></math> for any <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi>\\n<mo>&gt;</mo> <mn>0</mn></math>. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.2011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了 lacunary 球面最大算子的新端点边界,并因此获得了对于任意 𝜖> 0 的局部在 Llog log L(log log log L)1+𝜖 中的函数的 lacunary 球面均值的几乎无处不在的点式收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved endpoint bounds for the lacunary spherical maximal operator

We prove new endpoint bounds for the lacunary spherical maximal operator and as a consequence obtain almost everywhere pointwise convergence of lacunary spherical means for functions locally in Llog log log L(log log log log L)1+𝜖 for any 𝜖 > 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信