Lp-polarity, Mahler volumes, and the isotropic constant

IF 1.8 1区 数学 Q1 MATHEMATICS
Bo Berndtsson, Vlassis Mastrantonis, Yanir A. Rubinstein
{"title":"Lp-polarity, Mahler volumes, and the isotropic constant","authors":"Bo Berndtsson, Vlassis Mastrantonis, Yanir A. Rubinstein","doi":"10.2140/apde.2024.17.2179","DOIUrl":null,"url":null,"abstract":"<p>This article introduces <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> versions of the support function of a convex body <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> and associates to these canonical <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-polar bodies <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>K</mi></mrow><mrow><mo>∘</mo><mo>,</mo><mi>p</mi></mrow></msup></math> and Mahler volumes <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math>. Classical polarity is then seen as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math>-polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers for each <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>∈</mo>\n<mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo stretchy=\"false\">)</mo></math>. We settle the upper bound by demonstrating the existence and uniqueness of an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló point and an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló inequality for symmetric convex bodies. The proof uses Ball’s Brunn–Minkowski inequality for harmonic means, the classical Brunn–Minkowski inequality, symmetrization, and a systematic study of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> functionals. Using our results on the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló point and a new observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced to lower bounds on the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Mahler volume coupled with a certain conjectural convexity property of the logarithm of the Monge–Ampère measure of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-support function. We derive a suboptimal version of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to illustrate this approach to slicing. Finally, we explain how Nazarov’s complex-analytic approach to the classical Mahler conjecture is instead precisely an approach to the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math>-Mahler conjecture. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2179","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces Lp versions of the support function of a convex body K and associates to these canonical Lp-polar bodies K,p and Mahler volumes p(K). Classical polarity is then seen as L-polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers for each p (0,). We settle the upper bound by demonstrating the existence and uniqueness of an Lp-Santaló point and an Lp-Santaló inequality for symmetric convex bodies. The proof uses Ball’s Brunn–Minkowski inequality for harmonic means, the classical Brunn–Minkowski inequality, symmetrization, and a systematic study of the p functionals. Using our results on the Lp-Santaló point and a new observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced to lower bounds on the Lp-Mahler volume coupled with a certain conjectural convexity property of the logarithm of the Monge–Ampère measure of the Lp-support function. We derive a suboptimal version of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to illustrate this approach to slicing. Finally, we explain how Nazarov’s complex-analytic approach to the classical Mahler conjecture is instead precisely an approach to the L1-Mahler conjecture.

Lp 极性、马勒体积和各向同性常数
本文介绍了凸体 K 的支撑函数的 Lp 版本,并将这些典型的 Lp 极性体 K∘,p 与马勒体 ℳp(K) 联系起来。经典极性就是 L∞ 极性。极性的单参数广义化导致了马勒猜想的广义化,与原始猜想相比,它有一个微妙的优势:对于每个 p∈(0,∞),极值的猜想唯一性。我们通过证明对称凸体的 Lp-Santaló 点和 Lp-Santaló 不等式的存在性和唯一性,解决了上界问题。证明使用了波尔的布伦-闵科夫斯基不等式、经典的布伦-闵科夫斯基不等式、对称性以及对ℳp 函数的系统研究。利用我们对 Lp-Santaló 点的研究结果以及由复杂几何激发的新观察,我们展示了布尔甘的切片猜想如何简化为 Lp-Mahler 体积的下限,以及 Lp 支持函数的 Monge-Ampère 量对数的某种猜想凸性质。我们利用小林关于伯格曼度量的里奇曲率定理推导出这种凸性的次优版本,以说明这种切片方法。最后,我们解释了纳扎罗夫对经典马勒猜想的复解析方法如何恰恰是对 L1 马勒猜想的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信