Bo Berndtsson, Vlassis Mastrantonis, Yanir A. Rubinstein
{"title":"Lp-polarity, Mahler volumes, and the isotropic constant","authors":"Bo Berndtsson, Vlassis Mastrantonis, Yanir A. Rubinstein","doi":"10.2140/apde.2024.17.2179","DOIUrl":null,"url":null,"abstract":"<p>This article introduces <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> versions of the support function of a convex body <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> and associates to these canonical <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-polar bodies <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>K</mi></mrow><mrow><mo>∘</mo><mo>,</mo><mi>p</mi></mrow></msup></math> and Mahler volumes <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math>. Classical polarity is then seen as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math>-polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers for each <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>∈</mo>\n<mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo stretchy=\"false\">)</mo></math>. We settle the upper bound by demonstrating the existence and uniqueness of an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló point and an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló inequality for symmetric convex bodies. The proof uses Ball’s Brunn–Minkowski inequality for harmonic means, the classical Brunn–Minkowski inequality, symmetrization, and a systematic study of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> functionals. Using our results on the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló point and a new observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced to lower bounds on the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Mahler volume coupled with a certain conjectural convexity property of the logarithm of the Monge–Ampère measure of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-support function. We derive a suboptimal version of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to illustrate this approach to slicing. Finally, we explain how Nazarov’s complex-analytic approach to the classical Mahler conjecture is instead precisely an approach to the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math>-Mahler conjecture. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2179","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces versions of the support function of a convex body and associates to these canonical -polar bodies and Mahler volumes . Classical polarity is then seen as -polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers for each . We settle the upper bound by demonstrating the existence and uniqueness of an -Santaló point and an -Santaló inequality for symmetric convex bodies. The proof uses Ball’s Brunn–Minkowski inequality for harmonic means, the classical Brunn–Minkowski inequality, symmetrization, and a systematic study of the functionals. Using our results on the -Santaló point and a new observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced to lower bounds on the -Mahler volume coupled with a certain conjectural convexity property of the logarithm of the Monge–Ampère measure of the -support function. We derive a suboptimal version of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to illustrate this approach to slicing. Finally, we explain how Nazarov’s complex-analytic approach to the classical Mahler conjecture is instead precisely an approach to the -Mahler conjecture.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.