{"title":"乘积空间上准线性波方程系统的全局好求解性","authors":"Cécile Huneau, Annalaura Stingo","doi":"10.2140/apde.2024.17.2033","DOIUrl":null,"url":null,"abstract":"<p>We consider a system of quasilinear wave equations on the product space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup>\n<mo>×</mo> <msup><mrow><mi mathvariant=\"double-struck\">𝕊</mi></mrow><mrow><mn>1</mn></mrow></msup> </math>, which we want to see as a toy model for the Einstein equations with additional compact dimensions. We show global existence of solutions for small and regular initial data with polynomial decay at infinity. The method combines energy estimates on hyperboloids inside the light cone and weighted energy estimates outside the light cone. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"80 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for a system of quasilinear wave equations on a product space\",\"authors\":\"Cécile Huneau, Annalaura Stingo\",\"doi\":\"10.2140/apde.2024.17.2033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a system of quasilinear wave equations on the product space <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup>\\n<mo>×</mo> <msup><mrow><mi mathvariant=\\\"double-struck\\\">𝕊</mi></mrow><mrow><mn>1</mn></mrow></msup> </math>, which we want to see as a toy model for the Einstein equations with additional compact dimensions. We show global existence of solutions for small and regular initial data with polynomial decay at infinity. The method combines energy estimates on hyperboloids inside the light cone and weighted energy estimates outside the light cone. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.2033\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2033","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global well-posedness for a system of quasilinear wave equations on a product space
We consider a system of quasilinear wave equations on the product space , which we want to see as a toy model for the Einstein equations with additional compact dimensions. We show global existence of solutions for small and regular initial data with polynomial decay at infinity. The method combines energy estimates on hyperboloids inside the light cone and weighted energy estimates outside the light cone.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.