论翁萨格猜想中的端点正则性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Philip Isett
{"title":"论翁萨格猜想中的端点正则性","authors":"Philip Isett","doi":"10.2140/apde.2024.17.2123","DOIUrl":null,"url":null,"abstract":"<p>Onsager’s conjecture states that the conservation of energy may fail for three-dimensional incompressible Euler flows with Hölder regularity below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn></mrow>\n<mrow><mn>3</mn></mrow></mfrac></math>. This conjecture was recently solved by the author, yet the endpoint case remains an interesting open question with further connections to turbulence theory. In this work, we construct energy nonconserving solutions to the three-dimensional incompressible Euler equations with space-time Hölder regularity converging to the critical exponent at small spatial scales and containing the entire range of exponents <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo> <mfrac><mrow><mn>1</mn></mrow>\n<mrow><mn>3</mn></mrow></mfrac><mo stretchy=\"false\">)</mo></math>. </p><p> Our construction improves the author’s previous result towards the endpoint case. To obtain this improvement, we introduce a new method for optimizing the regularity that can be achieved by a convex integration scheme. A crucial point is to avoid loss of powers in frequency in the estimates of the iteration. This goal is achieved using localization techniques of Isett and Oh (<span>Arch.</span><span> Ration.</span><span> Mech.</span><span> Anal. </span><span>221</span>:2 (2016), 725–804) to modify the convex integration scheme. </p><p> We also prove results on general solutions at the critical regularity that may not conserve energy. These include a theorem on intermittency stating roughly that energy dissipating solutions cannot have absolute structure functions satisfying the Kolmogorov–Obukhov scaling for any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>&gt;</mo> <mn>3</mn></math> if their singular supports have space-time Lebesgue measure zero. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the endpoint regularity in Onsager’s conjecture\",\"authors\":\"Philip Isett\",\"doi\":\"10.2140/apde.2024.17.2123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Onsager’s conjecture states that the conservation of energy may fail for three-dimensional incompressible Euler flows with Hölder regularity below <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>1</mn></mrow>\\n<mrow><mn>3</mn></mrow></mfrac></math>. This conjecture was recently solved by the author, yet the endpoint case remains an interesting open question with further connections to turbulence theory. In this work, we construct energy nonconserving solutions to the three-dimensional incompressible Euler equations with space-time Hölder regularity converging to the critical exponent at small spatial scales and containing the entire range of exponents <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo> <mfrac><mrow><mn>1</mn></mrow>\\n<mrow><mn>3</mn></mrow></mfrac><mo stretchy=\\\"false\\\">)</mo></math>. </p><p> Our construction improves the author’s previous result towards the endpoint case. To obtain this improvement, we introduce a new method for optimizing the regularity that can be achieved by a convex integration scheme. A crucial point is to avoid loss of powers in frequency in the estimates of the iteration. This goal is achieved using localization techniques of Isett and Oh (<span>Arch.</span><span> Ration.</span><span> Mech.</span><span> Anal. </span><span>221</span>:2 (2016), 725–804) to modify the convex integration scheme. </p><p> We also prove results on general solutions at the critical regularity that may not conserve energy. These include a theorem on intermittency stating roughly that energy dissipating solutions cannot have absolute structure functions satisfying the Kolmogorov–Obukhov scaling for any <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>&gt;</mo> <mn>3</mn></math> if their singular supports have space-time Lebesgue measure zero. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.2123\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Onsager 猜想指出,对于赫尔德正则性低于 13 的三维不可压缩欧拉流,能量守恒可能失效。作者最近解决了这一猜想,但终点情况仍是一个有趣的未决问题,与湍流理论有进一步联系。在这项工作中,我们构建了三维不可压缩欧拉方程的能量不守恒解,其时空霍尔德正则性在小空间尺度上收敛于临界指数,并包含整个指数范围[0, 13]。 我们的构造改进了作者之前针对端点情况的结果。为了获得这种改进,我们引入了一种新方法来优化凸积分方案所能达到的正则性。一个关键点是避免迭代估计中的频率幂损失。这一目标可通过 Isett 和 Oh 的定位技术来实现(Arch.Ration.Mechan.Anal.221:2 (2016), 725-804)的局部化技术来修改凸积分方案。 我们还证明了在临界正则上可能不保存能量的一般解的结果。其中包括一个关于间歇性的定理,大致说明如果能量耗散解的奇异支撑具有时空勒贝格度量为零,那么对于任意 p> 3,能量耗散解不可能具有满足科尔莫戈罗夫-奥布霍夫标度的绝对结构函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the endpoint regularity in Onsager’s conjecture

Onsager’s conjecture states that the conservation of energy may fail for three-dimensional incompressible Euler flows with Hölder regularity below 1 3. This conjecture was recently solved by the author, yet the endpoint case remains an interesting open question with further connections to turbulence theory. In this work, we construct energy nonconserving solutions to the three-dimensional incompressible Euler equations with space-time Hölder regularity converging to the critical exponent at small spatial scales and containing the entire range of exponents [0, 1 3).

Our construction improves the author’s previous result towards the endpoint case. To obtain this improvement, we introduce a new method for optimizing the regularity that can be achieved by a convex integration scheme. A crucial point is to avoid loss of powers in frequency in the estimates of the iteration. This goal is achieved using localization techniques of Isett and Oh (Arch. Ration. Mech. Anal. 221:2 (2016), 725–804) to modify the convex integration scheme.

We also prove results on general solutions at the critical regularity that may not conserve energy. These include a theorem on intermittency stating roughly that energy dissipating solutions cannot have absolute structure functions satisfying the Kolmogorov–Obukhov scaling for any p > 3 if their singular supports have space-time Lebesgue measure zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信