Biomolecular NMR Assignments最新文献

筛选
英文 中文
Backbone resonance assignments of PhoCl, a photocleavable protein. PhoCl蛋白的主链共振配位。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2025-01-18 DOI: 10.1007/s12104-025-10215-8
Runhan Wang, Lina Zhu, Junfeng Wang, Lei Zhu
{"title":"Backbone resonance assignments of PhoCl, a photocleavable protein.","authors":"Runhan Wang, Lina Zhu, Junfeng Wang, Lei Zhu","doi":"10.1007/s12104-025-10215-8","DOIUrl":"https://doi.org/10.1007/s12104-025-10215-8","url":null,"abstract":"<p><p>PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools. Here, we report the backbone resonance assignments of PhoCl as a basis for studying the violet-light-induced self-cleavage mechanism of PhoCl.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone assignment of the N-terminal domain of the A subunit of the Bacillus cereus GerI germinant receptor. 蜡样芽孢杆菌GerI生发受体A亚基n端结构域的骨架分配。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2025-01-18 DOI: 10.1007/s12104-025-10216-7
Yulia Pustovalova, Yunfeng Li, Jeffrey C Hoch, Bing Hao
{"title":"Backbone assignment of the N-terminal domain of the A subunit of the Bacillus cereus GerI germinant receptor.","authors":"Yulia Pustovalova, Yunfeng Li, Jeffrey C Hoch, Bing Hao","doi":"10.1007/s12104-025-10216-7","DOIUrl":"https://doi.org/10.1007/s12104-025-10216-7","url":null,"abstract":"<p><p>The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA<sup>NTD</sup>). Furthermore, we derive the secondary structure of GerIA<sup>NTD</sup> in solution and compare it with the crystal structure of the NTD of the A subunit of a Bacillus megaterium GR. These findings lay the foundation for further NMR studies aimed at investigating the structure-function relationship of the GerI subunits, with a broader goal of understanding the molecular mechanism underlying germinant recognition and signal transduction in GRs across Bacillus species.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assignment of the N-terminal domain of mouse cGAS. 小鼠cGAS n端结构域的定位。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2025-01-04 DOI: 10.1007/s12104-024-10213-2
Hanna Aucharova, Rasmus Linser
{"title":"Assignment of the N-terminal domain of mouse cGAS.","authors":"Hanna Aucharova, Rasmus Linser","doi":"10.1007/s12104-024-10213-2","DOIUrl":"https://doi.org/10.1007/s12104-024-10213-2","url":null,"abstract":"<p><p>Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments. Analysis of the chemical-shift values confirms that the NTD is intrinsically disordered. These resonance assignments can provide the basis for further studies such as activation by DNA and protein-protein interactions.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone NMR resonance assignment of Sis1, a type B J-domain protein from Saccharomyces cerevisiae. 酿酒酵母菌B型j结构域蛋白Sis1的核磁共振骨架结构。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-12-30 DOI: 10.1007/s12104-024-10212-3
Glaucia M S Pinheiro, Gisele C Amorim, Carolina O Matos, Carlos H I Ramos, Fabio C L Almeida
{"title":"Backbone NMR resonance assignment of Sis1, a type B J-domain protein from Saccharomyces cerevisiae.","authors":"Glaucia M S Pinheiro, Gisele C Amorim, Carolina O Matos, Carlos H I Ramos, Fabio C L Almeida","doi":"10.1007/s12104-024-10212-3","DOIUrl":"https://doi.org/10.1007/s12104-024-10212-3","url":null,"abstract":"<p><p>J-domain proteins (JDPs) are essential cochaperones of heat shock protein 70 (Hsp70), as they bind and deliver misfolded polypeptides while also stimulating ATPase activity, thereby mediating the refolding process and assisting Hsp70 in maintaining cellular proteostasis. Despite their importance, detailed structural information about JDP‒Hsp70 complexes is still being explored due to various technical challenges. One major challenge is the lack of more detailed structural data on full-length JDPs. Class A and B JDPs, the most extensively studied, are typically dimers of 300-400 residue polypeptides with central intrinsically disordered regions. These features complicate structural analysis via NMR and X-ray crystallography techniques. This work presents the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C backbone resonance assignments of the full-length (352 residues long) Sis1, a dimeric class B JDP from S. cerevisiae. Our study achieved 70.5% residue assignment distributed across the entire protein, providing probes in all Sis1 domains for the first time. To overcome this challenging task, strategies such as deuteration and 3D BEST-TROSY correlation experiments were used. The methods and results are detailed within the text. We are confident that this achievement will significantly benefit both the structural biology and the proteostasis scientific communities.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: 1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy. 修正:核磁共振波谱对淀粉样蛋白肽SEM2(49-107)的1H, 13C和15N共振分配。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-12-27 DOI: 10.1007/s12104-024-10214-1
Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin
{"title":"Correction: <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy.","authors":"Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin","doi":"10.1007/s12104-024-10214-1","DOIUrl":"https://doi.org/10.1007/s12104-024-10214-1","url":null,"abstract":"","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR resonance assignment of a ligand-binding domain of ephrin receptor A2. ephrin受体A2配体结合域的核磁共振配位。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-12-19 DOI: 10.1007/s12104-024-10211-4
Konstantin S Mineev, Santosh L Gande, Verena Linhard, Sattar Khashkhashi Moghaddam, Harald Schwalbe
{"title":"NMR resonance assignment of a ligand-binding domain of ephrin receptor A2.","authors":"Konstantin S Mineev, Santosh L Gande, Verena Linhard, Sattar Khashkhashi Moghaddam, Harald Schwalbe","doi":"10.1007/s12104-024-10211-4","DOIUrl":"https://doi.org/10.1007/s12104-024-10211-4","url":null,"abstract":"<p><p>Ephrin receptors regulate intercellular communication and are thus involved in tumor development. Ephrin receptor A2 (EphA2), in particular, is overexpressed in a variety of cancers and is a proven target for anti-cancer drugs. The N-terminal ligand-binding domain of ephrin receptors is responsible for the recognition of their ligands, ephrins, and is directly involved in receptor activation. Here, we report on the complete <sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C NMR chemical shift assignment of EphA2 ligand binding domain that provides the basis for NMR-assisted drug design.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C. 酪氨酸合成酶C-末端硫酯酶结构域的主链共振配位。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-12-11 DOI: 10.1007/s12104-024-10210-5
Mitsuhiro Takeda, Rino Saito, Sho Konno, Takayuki Nagae, Hiroshi Aoyama, Sosuke Yoshinaga, Hiroaki Terasawa, Akihiro Taguchi, Atsuhiko Taniguchi, Yoshio Hayashi, Masaki Mishima
{"title":"Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C.","authors":"Mitsuhiro Takeda, Rino Saito, Sho Konno, Takayuki Nagae, Hiroshi Aoyama, Sosuke Yoshinaga, Hiroaki Terasawa, Akihiro Taguchi, Atsuhiko Taniguchi, Yoshio Hayashi, Masaki Mishima","doi":"10.1007/s12104-024-10210-5","DOIUrl":"https://doi.org/10.1007/s12104-024-10210-5","url":null,"abstract":"<p><p>Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product. In the final biosynthetic step, the mature linear peptide precursor is subject to head-to-tail cyclization by the thioesterase (TE) domain in the C-terminal module. Since the TE domains can autonomously catalyze the cyclization of diverse linear peptide substrates, isolated TE domains can be used to produce natural product derivatives. To understand the mechanism of TE domains in NRPSs as a base for therapeutic applications, we investigated the TE domain (residues 6236-6486) of tyrocidine synthetase TycC by NMR. Tyrocidine is a cyclic decapeptide with antibiotic activity, and TycC-TE catalyzes the cyclization of the linear decapeptide precursor. Here, we report the backbone resonance assignments of TycC-TE. The assignments of TycC-TE provide the basis for NMR investigations of the structure and substrate-recognition mode of the TE domain in NRPS.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy. 淀粉样蛋白肽SEM2(49-107)的1H, 13C和15N共振分配。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-11-29 DOI: 10.1007/s12104-024-10209-y
Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin
{"title":"<sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy.","authors":"Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin","doi":"10.1007/s12104-024-10209-y","DOIUrl":"10.1007/s12104-024-10209-y","url":null,"abstract":"<p><p>It has been shown that human seminal fluid is a major factor in enhancing HIV activity. The SEM2(49-107) peptide is a product of cleavage after ejaculation by internal prostheses of the semenogelin 2 protein, expressed in seminal vesicles. It is established that the peptide SEM2(49-107) forms amyloid fibrils, which increase probability of contracting HIV infection. In this nuclear magnetic resonance (NMR) study, we present almost complete (86%) resonance assignments for the <sup>1</sup>H <sup>15</sup>N and <sup>13</sup>C atoms of the backbone and side-chain of the SEM2(49-107) peptide (BioMagResBank accession number 52356). The secondary structure of SEM2(49-107) peptide was estimated by using two approaches, secondary chemical shifts analysis (CSI) and TALOS-N prediction. Analysis of the secondary structure of the SEM2(49-107) peptide using both methods revealed that the peptide contains helical segments at the C-terminus. Also in this work, we used phase-sensitive 2D HSQC <sup>1</sup>H- <sup>15</sup>N experiments measuring longitudinal T<sub>1</sub> and transverse T<sub>2</sub> NMR relaxation times to report predicted secondary structure and backbone dynamics of the SEM2(49-107) peptide. This resonance assignment will form the basis of future NMR research, contributing to a better understanding of the peptide structure and internal dynamics of the molecule.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. 寨卡病毒 NS4B 蛋白 N 端区域在洗涤剂胶束中的 1H、15N 和 13C 骨架共振分配。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-11-07 DOI: 10.1007/s12104-024-10208-z
Yan Li, Ying Ru Loh, Qingxin Li, Dahai Luo, CongBao Kang
{"title":"<sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles.","authors":"Yan Li, Ying Ru Loh, Qingxin Li, Dahai Luo, CongBao Kang","doi":"10.1007/s12104-024-10208-z","DOIUrl":"https://doi.org/10.1007/s12104-024-10208-z","url":null,"abstract":"<p><p>Zika virus has raised global concerns due to its link to microcephaly and Guillain-Barré syndrome in adults. One of viral nonstructural proteins-NS4B, an integral membrane protein, plays crucial roles in viral replication by interacting with both viral and host proteins, rendering it an attractive drug target for antiviral development. We purified the N-terminal region of ZIKV NS4B (NS4B NTD) and reconstituted it into detergent micelles. Here, we report the assignments of the backbone resonances of NS4B NTD in detergent micelles. The available assignment is useful for understanding its structure and ligand binding to provide useful information for developing NS4B inhibitors.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea P190A RhoGAP 的 FF1 结构域在 5 M 和 8 M 尿素中的 1H、15N 和 13C 骨架共振赋值。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-10-14 DOI: 10.1007/s12104-024-10197-z
Aarão Camilo-Ramos, Dmitry M. Korzhnev, Ramon Pinheiro-Aguiar, Fabio C. L. Almeida
{"title":"Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea","authors":"Aarão Camilo-Ramos,&nbsp;Dmitry M. Korzhnev,&nbsp;Ramon Pinheiro-Aguiar,&nbsp;Fabio C. L. Almeida","doi":"10.1007/s12104-024-10197-z","DOIUrl":"10.1007/s12104-024-10197-z","url":null,"abstract":"<div><p>The Rho GTPase (Ras homolog GTPases) system is a crucial signal transducer that regulates various cellular processes, including cell cycle and migration, genetic transcription, and apoptosis. In this study, we investigated the unfolded state of the first FF domain (FF1) of P190A RhoGAP, which features four tandem FF domains. For signal transduction, FF1 is phosphorylated at tyrosine 308 (Y308), which is buried in the hydrophobic core and is inaccessible to kinases in the folded domain. It was proposed, therefore, that the phosphorylation occurs in a transiently populated unfolded state of FF1. To probe the folding pathway of the RhoGAP FF1 domain, here we have performed a nearly complete backbone resonance assignments of a putative partially unfolded state of FF1 in 5 M urea and its fully unfolded state in 8 M urea.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"257 - 262"},"PeriodicalIF":0.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信