Soma Varga, Julie Maibøll Kaasen, Zoltán Gáspári, Bálint Ferenc Péterfia, Frans A A Mulder
{"title":"Resonance assignment of the intrinsically disordered actin-binding region of Drebrin.","authors":"Soma Varga, Julie Maibøll Kaasen, Zoltán Gáspári, Bálint Ferenc Péterfia, Frans A A Mulder","doi":"10.1007/s12104-025-10239-0","DOIUrl":null,"url":null,"abstract":"<p><p>Drebrin (developmentally regulated brain protein) is a vital component of the Postsynaptic Density (PSD). It performs important biological roles as it interacts with the postsynaptic protein Homer and anchors the complete protein network to the cellular skeleton through actin filaments. Drebrin contains unique structural elements including an evolutionarily unconventional actin-depolymerizing factor homology (ADFH) domain that has lost its strong actin-binding ability, and a Single Alpha-Helix (SAH) motif harbored by long flexible regions. In vivo studies have suggested that a disordered segment in Drebrin plays a key role in binding filamentous actin, yet the atomic-level characterization of the binding interface between these proteins has not been reported. To bridge this gap, we designed the intrinsically disordered construct D233 and employed 3D (HN)CO(CO)NH NMR spectroscopy to accomplish a near-complete backbone resonance assignment. This work serves as an essential step toward a detailed structural and functional investigation of the interaction between Drebrin and F-Actin.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-025-10239-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Drebrin (developmentally regulated brain protein) is a vital component of the Postsynaptic Density (PSD). It performs important biological roles as it interacts with the postsynaptic protein Homer and anchors the complete protein network to the cellular skeleton through actin filaments. Drebrin contains unique structural elements including an evolutionarily unconventional actin-depolymerizing factor homology (ADFH) domain that has lost its strong actin-binding ability, and a Single Alpha-Helix (SAH) motif harbored by long flexible regions. In vivo studies have suggested that a disordered segment in Drebrin plays a key role in binding filamentous actin, yet the atomic-level characterization of the binding interface between these proteins has not been reported. To bridge this gap, we designed the intrinsically disordered construct D233 and employed 3D (HN)CO(CO)NH NMR spectroscopy to accomplish a near-complete backbone resonance assignment. This work serves as an essential step toward a detailed structural and functional investigation of the interaction between Drebrin and F-Actin.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.