{"title":"Backbone NMR assignments of the essential oxidoreductase tryparedoxin from the human pathogenic parasite Trypanosoma cruzi.","authors":"Eric Schwegler, Ute A Hellmich","doi":"10.1007/s12104-025-10244-3","DOIUrl":null,"url":null,"abstract":"<p><p>Over 7 million people worldwide are affected with Chagas disease, a lifelong debilitating and potentially fatal Neglected Tropical Disease caused by the single cell protozoan parasite Trypanosoma cruzi. To maintain viability and to reproduce under the harsh conditions within a host organism, pathogens express a variety of protecting enzymes and virulence factors that can serve as potential drug targets. To protect itself from redox stress, T. cruzi takes advantage of a unique thiol metabolism. For instance, a cytosolic peroxide clearance cascade is centered on the conserved oxidoreductase Tryparedoxin (Tpx). Tpx efficiently distributes reducing equivalents across the parasitic cell through the promiscuous yet selective binding of numerous up- and downstream clients. However, the exact structure and binding interfaces of this central protein binding hub remain unknown. To study the redox-dependent structural dynamics of T. cruzi Tpx, and its interactions with binding partners, we determined the <sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N-backbone NMR assignments of the enzyme in the reduced and oxidized state. In agreement with earlier NMR studies on Tpx from related protozoans, we report redox-dependent changes in the enzyme's dithiol active site that could play a crucial role in the recognition of physiological substrates and should be considered in the rational design of small molecule inhibitors.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-025-10244-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Over 7 million people worldwide are affected with Chagas disease, a lifelong debilitating and potentially fatal Neglected Tropical Disease caused by the single cell protozoan parasite Trypanosoma cruzi. To maintain viability and to reproduce under the harsh conditions within a host organism, pathogens express a variety of protecting enzymes and virulence factors that can serve as potential drug targets. To protect itself from redox stress, T. cruzi takes advantage of a unique thiol metabolism. For instance, a cytosolic peroxide clearance cascade is centered on the conserved oxidoreductase Tryparedoxin (Tpx). Tpx efficiently distributes reducing equivalents across the parasitic cell through the promiscuous yet selective binding of numerous up- and downstream clients. However, the exact structure and binding interfaces of this central protein binding hub remain unknown. To study the redox-dependent structural dynamics of T. cruzi Tpx, and its interactions with binding partners, we determined the 1H, 13C, 15N-backbone NMR assignments of the enzyme in the reduced and oxidized state. In agreement with earlier NMR studies on Tpx from related protozoans, we report redox-dependent changes in the enzyme's dithiol active site that could play a crucial role in the recognition of physiological substrates and should be considered in the rational design of small molecule inhibitors.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.