Journal of Homotopy and Related Structures最新文献

筛选
英文 中文
Resolutions of operads via Koszul (bi)algebras 通过Koszul (bi)代数解析操作数
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2022-03-03 DOI: 10.1007/s40062-022-00302-1
Pedro Tamaroff
{"title":"Resolutions of operads via Koszul (bi)algebras","authors":"Pedro Tamaroff","doi":"10.1007/s40062-022-00302-1","DOIUrl":"10.1007/s40062-022-00302-1","url":null,"abstract":"<div><p>We introduce a construction that produces from each bialgebra <i>H</i> an operad <span>(mathsf {Ass}_H)</span> controlling associative algebras in the monoidal category of <i>H</i>-modules or, briefly, <i>H</i>-algebras. When the underlying algebra of this bialgebra is Koszul, we give explicit formulas for the minimal model of this operad depending only on the coproduct of <i>H</i> and the Koszul model of <i>H</i>. This operad is seldom quadratic—and hence does not fall within the reach of Koszul duality theory—so our work provides a new rich family of examples where an explicit minimal model of an operad can be obtained. As an application, we observe that if we take <i>H</i> to be the mod-2 Steenrod algebra <span>({mathscr {A}})</span>, then this notion of an associative <i>H</i>-algebra coincides with the usual notion of an <span>(mathscr {A})</span>-algebra considered by homotopy theorists. This makes available to us an operad <span>(mathsf {Ass}_{{mathscr {A}}})</span> along with its minimal model that controls the category of associative <span>({mathscr {A}})</span>-algebras, and the notion of strong homotopy associative <span>({mathscr {A}})</span>-algebras.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00302-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4131122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Euler–Poincaré characteristics of a simply connected rationally elliptic CW-complex 单连通合理椭圆型cw -复形的euler - poincarcarr特征
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2022-02-22 DOI: 10.1007/s40062-022-00301-2
Mahmoud Benkhalifa
{"title":"On the Euler–Poincaré characteristics of a simply connected rationally elliptic CW-complex","authors":"Mahmoud Benkhalifa","doi":"10.1007/s40062-022-00301-2","DOIUrl":"10.1007/s40062-022-00301-2","url":null,"abstract":"<div><p>For a simply connected rationally elliptic CW-complex <i>X</i>, we show that the cohomology and the homotopy Euler–Poincaré characteristics are related to two new numerical invariants namely <span>(eta _{X})</span> and <span>(rho _{X})</span> which we define using the Whitehead exact sequences of the Quillen and the Sullivan models of <i>X</i>.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4851561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectedness of graphs arising from the dual Steenrod algebra 对偶Steenrod代数图的连通性
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2022-02-08 DOI: 10.1007/s40062-022-00300-3
Donald M. Larson
{"title":"Connectedness of graphs arising from the dual Steenrod algebra","authors":"Donald M. Larson","doi":"10.1007/s40062-022-00300-3","DOIUrl":"10.1007/s40062-022-00300-3","url":null,"abstract":"<div><p>We establish connectedness criteria for graphs associated to monomials in certain quotients of the mod 2 dual Steenrod algebra <span>(mathscr {A}^*)</span>. We also investigate questions about trees and Hamilton cycles in the context of these graphs. Finally, we improve upon a known connection between the graph theoretic interpretation of <span>(mathscr {A}^*)</span> and its structure as a Hopf algebra.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4337751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On graded ({mathbb {E}}_{infty })-rings and projective schemes in spectral algebraic geometry 谱代数几何中的分级({mathbb {E}}_{infty }) -环和射影格式
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2022-01-31 DOI: 10.1007/s40062-021-00298-0
Mariko Ohara, Takeshi Torii
{"title":"On graded ({mathbb {E}}_{infty })-rings and projective schemes in spectral algebraic geometry","authors":"Mariko Ohara,&nbsp;Takeshi Torii","doi":"10.1007/s40062-021-00298-0","DOIUrl":"10.1007/s40062-021-00298-0","url":null,"abstract":"<div><p>We introduce graded <span>({mathbb {E}}_{infty })</span>-rings and graded modules over them, and study their properties. We construct projective schemes associated to connective <span>({mathbb {N}})</span>-graded <span>({mathbb {E}}_{infty })</span>-rings in spectral algebraic geometry. Under some finiteness conditions, we show that the <span>(infty )</span>-category of almost perfect quasi-coherent sheaves over a spectral projective scheme <span>(text { {Proj}},(A))</span> associated to a connective <span>({mathbb {N}})</span>-graded <span>({mathbb {E}}_{infty })</span>-ring <i>A</i> can be described in terms of <span>({{mathbb {Z}}})</span>-graded <i>A</i>-modules.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-021-00298-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5179992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The completion theorem in twisted equivariant K-theory for proper actions 固有作用的扭曲等变k理论中的补全定理
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2022-01-31 DOI: 10.1007/s40062-021-00299-z
Noé Bárcenas, Mario Velásquez
{"title":"The completion theorem in twisted equivariant K-theory for proper actions","authors":"Noé Bárcenas,&nbsp;Mario Velásquez","doi":"10.1007/s40062-021-00299-z","DOIUrl":"10.1007/s40062-021-00299-z","url":null,"abstract":"<div><p>We compare different algebraic structures in twisted equivariant <i>K</i>-theory for proper actions of discrete groups. After the construction of a module structure over untwisted equivariant K-theory, we prove a completion Theorem of Atiyah–Segal type for twisted equivariant K-theory. Using a universal coefficient theorem, we prove a cocompletion Theorem for twisted Borel K-homology for discrete groups.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5172963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(C_2)-equivariant topological modular forms (C_2)-等变拓扑模形式
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2022-01-10 DOI: 10.1007/s40062-021-00297-1
Dexter Chua
{"title":"(C_2)-equivariant topological modular forms","authors":"Dexter Chua","doi":"10.1007/s40062-021-00297-1","DOIUrl":"10.1007/s40062-021-00297-1","url":null,"abstract":"<div><p>We compute the homotopy groups of the <span>(C_2)</span> fixed points of equivariant topological modular forms at the prime 2 using the descent spectral sequence. We then show that as a <span>({mathrm {TMF}})</span>-module, it is isomorphic to the tensor product of <span>({mathrm {TMF}})</span> with an explicit finite cell complex.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4418988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Marked colimits and higher cofinality 界限明显,共通性高
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2021-12-16 DOI: 10.1007/s40062-021-00296-2
Fernando Abellán García
{"title":"Marked colimits and higher cofinality","authors":"Fernando Abellán García","doi":"10.1007/s40062-021-00296-2","DOIUrl":"10.1007/s40062-021-00296-2","url":null,"abstract":"<div><p>Given a marked <span>(infty )</span>-category <span>(mathcal {D}^{dagger })</span> (i.e. an <span>(infty )</span>-category equipped with a specified collection of morphisms) and a functor <span>(F: mathcal {D}rightarrow {mathbb {B}})</span> with values in an <span>(infty )</span>-bicategory, we define <img>, the marked colimit of <i>F</i>. We provide a definition of weighted colimits in <span>(infty )</span>-bicategories when the indexing diagram is an <span>(infty )</span>-category and show that they can be computed in terms of marked colimits. In the maximally marked case <span>(mathcal {D}^{sharp })</span>, our construction retrieves the <span>(infty )</span>-categorical colimit of <i>F</i> in the underlying <span>(infty )</span>-category <span>(mathcal {B}subseteq {mathbb {B}})</span>. In the specific case when <img>, the <span>(infty )</span>-bicategory of <span>(infty )</span>-categories and <span>(mathcal {D}^{flat })</span> is minimally marked, we recover the definition of lax colimit of Gepner–Haugseng–Nikolaus. We show that a suitable <span>(infty )</span>-localization of the associated coCartesian fibration <span>({text {Un}}_{mathcal {D}}(F))</span> computes <img>. Our main theorem is a characterization of those functors of marked <span>(infty )</span>-categories <span>({f:mathcal {C}^{dagger } rightarrow mathcal {D}^{dagger }})</span> which are marked cofinal. More precisely, we provide sufficient and necessary criteria for the restriction of diagrams along <i>f</i> to preserve marked colimits</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-021-00296-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4640649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the LS-category and topological complexity of projective product spaces 关于射影积空间的ls -范畴和拓扑复杂度
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2021-11-08 DOI: 10.1007/s40062-021-00295-3
Seher Fişekci, Lucile Vandembroucq
{"title":"On the LS-category and topological complexity of projective product spaces","authors":"Seher Fişekci,&nbsp;Lucile Vandembroucq","doi":"10.1007/s40062-021-00295-3","DOIUrl":"10.1007/s40062-021-00295-3","url":null,"abstract":"<div><p>We determine the Lusternik-Schnirelmann category of the projective product spaces introduced by D. Davis. We also obtain an upper bound for the topological complexity of these spaces, which improves the estimate given by J. González, M. Grant, E. Torres-Giese, and M. Xicoténcatl.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-021-00295-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4353260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Overcategories and undercategories of cofibrantly generated model categories 共同生成的模型类别的超类别和下类别
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2021-10-13 DOI: 10.1007/s40062-021-00294-4
Philip S. Hirschhorn
{"title":"Overcategories and undercategories of cofibrantly generated model categories","authors":"Philip S. Hirschhorn","doi":"10.1007/s40062-021-00294-4","DOIUrl":"10.1007/s40062-021-00294-4","url":null,"abstract":"<div><p>Let <span>(mathcal {M})</span> be a model category and let <i>Z</i> be an object of <span>(mathcal {M})</span>. We show that if <span>(mathcal {M})</span> is cofibrantly generated, cellular, left proper, or right proper, then both the model category <img> of objects of <span>(mathcal {M})</span> over <i>Z</i> and the model category <img> of objects of <span>(mathcal {M})</span> under <i>Z</i> are as well.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4556503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Rational model for the string coproduct of pure manifolds 纯流形弦副积的有理模型
IF 0.5 4区 数学
Journal of Homotopy and Related Structures Pub Date : 2021-10-07 DOI: 10.1007/s40062-021-00293-5
Takahito Naito
{"title":"Rational model for the string coproduct of pure manifolds","authors":"Takahito Naito","doi":"10.1007/s40062-021-00293-5","DOIUrl":"10.1007/s40062-021-00293-5","url":null,"abstract":"<div><p>The string coproduct is a coproduct on the homology with field coefficients of the free loop space of a closed oriented manifold introduced by Sullivan in string topology. The coproduct and the Chas-Sullivan loop product give an infinitesimal bialgebra structure on the homology if the Euler characteristic is zero. The aim of this paper is to study the string coproduct using Sullivan models in rational homotopy theory. In particular, we give a rational model for the string coproduct of pure manifolds. Moreover, we study the behavior of the string coproduct in terms of the Hodge decomposition of the rational cohomology of the free loop space. We also give computational examples of the coproduct rationally.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4322425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信