多泛函k理论是同伦理论的等价

IF 0.7 4区 数学 Q2 MATHEMATICS
Niles Johnson, Donald Yau
{"title":"多泛函k理论是同伦理论的等价","authors":"Niles Johnson,&nbsp;Donald Yau","doi":"10.1007/s40062-022-00317-8","DOIUrl":null,"url":null,"abstract":"<div><p>We show that each of the three <i>K</i>-theory multifunctors from small permutative categories to <span>\\(\\mathcal {G}_*\\)</span>-categories, <span>\\(\\mathcal {G}_*\\)</span>-simplicial sets, and connective spectra, is an equivalence of homotopy theories. For each of these <i>K</i>-theory multifunctors, we describe an explicit homotopy inverse functor. As a separate application of our general results about pointed diagram categories, we observe that the right-induced homotopy theory of Bohmann–Osorno <span>\\(\\mathcal {E}_*\\)</span>-categories is equivalent to the homotopy theory of pointed simplicial categories.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00317-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Multifunctorial K-theory is an equivalence of homotopy theories\",\"authors\":\"Niles Johnson,&nbsp;Donald Yau\",\"doi\":\"10.1007/s40062-022-00317-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that each of the three <i>K</i>-theory multifunctors from small permutative categories to <span>\\\\(\\\\mathcal {G}_*\\\\)</span>-categories, <span>\\\\(\\\\mathcal {G}_*\\\\)</span>-simplicial sets, and connective spectra, is an equivalence of homotopy theories. For each of these <i>K</i>-theory multifunctors, we describe an explicit homotopy inverse functor. As a separate application of our general results about pointed diagram categories, we observe that the right-induced homotopy theory of Bohmann–Osorno <span>\\\\(\\\\mathcal {E}_*\\\\)</span>-categories is equivalent to the homotopy theory of pointed simplicial categories.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40062-022-00317-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00317-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00317-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了从小置换范畴到\(\mathcal {G}_*\) -范畴、\(\mathcal {G}_*\) -简单集合和连接谱的三个k理论多函子中的每一个都是同伦理论的等价。对于每一个k理论多函子,我们描述了一个显式同伦逆函子。作为我们关于点图范畴的一般结果的单独应用,我们观察到Bohmann-Osorno \(\mathcal {E}_*\) -范畴的右诱导同伦理论等价于点简单范畴的同伦理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctorial K-theory is an equivalence of homotopy theories

We show that each of the three K-theory multifunctors from small permutative categories to \(\mathcal {G}_*\)-categories, \(\mathcal {G}_*\)-simplicial sets, and connective spectra, is an equivalence of homotopy theories. For each of these K-theory multifunctors, we describe an explicit homotopy inverse functor. As a separate application of our general results about pointed diagram categories, we observe that the right-induced homotopy theory of Bohmann–Osorno \(\mathcal {E}_*\)-categories is equivalent to the homotopy theory of pointed simplicial categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信