Localization \(C^*-\)algebras and index pairing

IF 0.7 4区 数学 Q2 MATHEMATICS
Hang Wang, Chaohua Zhang, Dapeng Zhou
{"title":"Localization \\(C^*-\\)algebras and index pairing","authors":"Hang Wang,&nbsp;Chaohua Zhang,&nbsp;Dapeng Zhou","doi":"10.1007/s40062-022-00320-z","DOIUrl":null,"url":null,"abstract":"<div><p>Kasparov <i>KK</i>-theory for a pair of <span>\\(C^*\\)</span>-algebras <span>\\((A,\\,B)\\)</span> can be formulated equivalently in terms of the <i>K</i>-theory of Yu’s localization algebra by Dadarlat-Willett-Wu. We investigate the pairings between <i>K</i>-theory <span>\\(K_j(A)\\)</span> and the two notions of <i>KK</i>-theory which are Kasparov <i>KK</i>-theory <span>\\(KK_i(A,B)\\)</span> and the localization algebra description of <span>\\(KK_i(A,B)\\)</span> and show that the two pairings are compatible.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"18 1","pages":"1 - 22"},"PeriodicalIF":0.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00320-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Kasparov KK-theory for a pair of \(C^*\)-algebras \((A,\,B)\) can be formulated equivalently in terms of the K-theory of Yu’s localization algebra by Dadarlat-Willett-Wu. We investigate the pairings between K-theory \(K_j(A)\) and the two notions of KK-theory which are Kasparov KK-theory \(KK_i(A,B)\) and the localization algebra description of \(KK_i(A,B)\) and show that the two pairings are compatible.

定位\(C^*-\)代数和索引配对
对于一对\(C^*\) -代数\((A,\,B)\)的Kasparov kk理论可以用dadarlatt - willett - wu的Yu的局部代数的k理论等价地表示。我们研究了k理论\(K_j(A)\)与kk理论的两个概念(Kasparov kk理论\(KK_i(A,B)\)和\(KK_i(A,B)\)的局部代数描述)之间的配对,并证明了这两个配对是相容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信