用曲线迭代积分在路径空间上对束值形式进行建模

Pub Date : 2022-07-13 DOI:10.1007/s40062-022-00306-x
Cheyne Glass, Corbett Redden
{"title":"用曲线迭代积分在路径空间上对束值形式进行建模","authors":"Cheyne Glass,&nbsp;Corbett Redden","doi":"10.1007/s40062-022-00306-x","DOIUrl":null,"url":null,"abstract":"<div><p>The usual iterated integral map given by Chen produces an equivalence between the two-sided bar complex on differential forms and the de Rham complex on the path space. This map fails to make sense when considering the curved differential graded algebra of bundle-valued forms with a covariant derivative induced by a connection. In this paper, we define a curved version of Chen’s iterated integral that incorporates parallel transport and maps an analog of the two-sided bar construction on bundle-valued forms to bundle-valued forms on the path space. This iterated integral is proven to be a homotopy equivalence of curved differential graded algebras, and for real-valued forms it factors through the usual Chen iterated integral.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00306-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling bundle-valued forms on the path space with a curved iterated integral\",\"authors\":\"Cheyne Glass,&nbsp;Corbett Redden\",\"doi\":\"10.1007/s40062-022-00306-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The usual iterated integral map given by Chen produces an equivalence between the two-sided bar complex on differential forms and the de Rham complex on the path space. This map fails to make sense when considering the curved differential graded algebra of bundle-valued forms with a covariant derivative induced by a connection. In this paper, we define a curved version of Chen’s iterated integral that incorporates parallel transport and maps an analog of the two-sided bar construction on bundle-valued forms to bundle-valued forms on the path space. This iterated integral is proven to be a homotopy equivalence of curved differential graded algebras, and for real-valued forms it factors through the usual Chen iterated integral.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40062-022-00306-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00306-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00306-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Chen给出的通常的迭代积分映射产生了微分形式上的双面杆复形和路径空间上的de Rham复形之间的等价。当考虑具有由连接诱导的协变导数的束值形式的弯曲微分梯度代数时,该映射没有意义。在本文中,我们定义了包含平行移动的Chen迭代积分的弯曲版本,并将束值形式上的双面杆结构的模拟映射到路径空间上的束值形式。证明了该迭代积分是弯曲微分梯度代数的同伦等价,并通过通常的Chen迭代积分来分解实值形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Modeling bundle-valued forms on the path space with a curved iterated integral

The usual iterated integral map given by Chen produces an equivalence between the two-sided bar complex on differential forms and the de Rham complex on the path space. This map fails to make sense when considering the curved differential graded algebra of bundle-valued forms with a covariant derivative induced by a connection. In this paper, we define a curved version of Chen’s iterated integral that incorporates parallel transport and maps an analog of the two-sided bar construction on bundle-valued forms to bundle-valued forms on the path space. This iterated integral is proven to be a homotopy equivalence of curved differential graded algebras, and for real-valued forms it factors through the usual Chen iterated integral.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信