定位\(C^*-\)代数和索引配对

Pub Date : 2022-11-24 DOI:10.1007/s40062-022-00320-z
Hang Wang, Chaohua Zhang, Dapeng Zhou
{"title":"定位\\(C^*-\\)代数和索引配对","authors":"Hang Wang,&nbsp;Chaohua Zhang,&nbsp;Dapeng Zhou","doi":"10.1007/s40062-022-00320-z","DOIUrl":null,"url":null,"abstract":"<div><p>Kasparov <i>KK</i>-theory for a pair of <span>\\(C^*\\)</span>-algebras <span>\\((A,\\,B)\\)</span> can be formulated equivalently in terms of the <i>K</i>-theory of Yu’s localization algebra by Dadarlat-Willett-Wu. We investigate the pairings between <i>K</i>-theory <span>\\(K_j(A)\\)</span> and the two notions of <i>KK</i>-theory which are Kasparov <i>KK</i>-theory <span>\\(KK_i(A,B)\\)</span> and the localization algebra description of <span>\\(KK_i(A,B)\\)</span> and show that the two pairings are compatible.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization \\\\(C^*-\\\\)algebras and index pairing\",\"authors\":\"Hang Wang,&nbsp;Chaohua Zhang,&nbsp;Dapeng Zhou\",\"doi\":\"10.1007/s40062-022-00320-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kasparov <i>KK</i>-theory for a pair of <span>\\\\(C^*\\\\)</span>-algebras <span>\\\\((A,\\\\,B)\\\\)</span> can be formulated equivalently in terms of the <i>K</i>-theory of Yu’s localization algebra by Dadarlat-Willett-Wu. We investigate the pairings between <i>K</i>-theory <span>\\\\(K_j(A)\\\\)</span> and the two notions of <i>KK</i>-theory which are Kasparov <i>KK</i>-theory <span>\\\\(KK_i(A,B)\\\\)</span> and the localization algebra description of <span>\\\\(KK_i(A,B)\\\\)</span> and show that the two pairings are compatible.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00320-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00320-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一对\(C^*\) -代数\((A,\,B)\)的Kasparov kk理论可以用dadarlatt - willett - wu的Yu的局部代数的k理论等价地表示。我们研究了k理论\(K_j(A)\)与kk理论的两个概念(Kasparov kk理论\(KK_i(A,B)\)和\(KK_i(A,B)\)的局部代数描述)之间的配对,并证明了这两个配对是相容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Localization \(C^*-\)algebras and index pairing

Kasparov KK-theory for a pair of \(C^*\)-algebras \((A,\,B)\) can be formulated equivalently in terms of the K-theory of Yu’s localization algebra by Dadarlat-Willett-Wu. We investigate the pairings between K-theory \(K_j(A)\) and the two notions of KK-theory which are Kasparov KK-theory \(KK_i(A,B)\) and the localization algebra description of \(KK_i(A,B)\) and show that the two pairings are compatible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信