{"title":"一元微积分:模型范畴与收敛性","authors":"Niall Taggart","doi":"10.1007/s40062-022-00311-0","DOIUrl":null,"url":null,"abstract":"<div><p>We construct the unitary analogue of orthogonal calculus developed by Weiss, utilising model categories to give a clear description of the intricacies in the equivariance and homotopy theory involved. The subtle differences between real and complex geometry lead to subtle differences between orthogonal and unitary calculus. To address these differences we construct unitary spectra—a variation of orthogonal spectra—as a model for the stable homotopy category. We show through a zig-zag of Quillen equivalences that unitary spectra with an action of the <i>n</i>-th unitary group models the homogeneous part of unitary calculus. We address the issue of convergence of the Taylor tower by introducing weakly polynomial functors, which are similar to weakly analytic functors of Goodwillie but more computationally tractable.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00311-0.pdf","citationCount":"7","resultStr":"{\"title\":\"Unitary calculus: model categories and convergence\",\"authors\":\"Niall Taggart\",\"doi\":\"10.1007/s40062-022-00311-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct the unitary analogue of orthogonal calculus developed by Weiss, utilising model categories to give a clear description of the intricacies in the equivariance and homotopy theory involved. The subtle differences between real and complex geometry lead to subtle differences between orthogonal and unitary calculus. To address these differences we construct unitary spectra—a variation of orthogonal spectra—as a model for the stable homotopy category. We show through a zig-zag of Quillen equivalences that unitary spectra with an action of the <i>n</i>-th unitary group models the homogeneous part of unitary calculus. We address the issue of convergence of the Taylor tower by introducing weakly polynomial functors, which are similar to weakly analytic functors of Goodwillie but more computationally tractable.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40062-022-00311-0.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00311-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00311-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unitary calculus: model categories and convergence
We construct the unitary analogue of orthogonal calculus developed by Weiss, utilising model categories to give a clear description of the intricacies in the equivariance and homotopy theory involved. The subtle differences between real and complex geometry lead to subtle differences between orthogonal and unitary calculus. To address these differences we construct unitary spectra—a variation of orthogonal spectra—as a model for the stable homotopy category. We show through a zig-zag of Quillen equivalences that unitary spectra with an action of the n-th unitary group models the homogeneous part of unitary calculus. We address the issue of convergence of the Taylor tower by introducing weakly polynomial functors, which are similar to weakly analytic functors of Goodwillie but more computationally tractable.