The \(\mathbb {R}\)-local homotopy theory of smooth spaces

Pub Date : 2022-11-11 DOI:10.1007/s40062-022-00318-7
Severin Bunk
{"title":"The \\(\\mathbb {R}\\)-local homotopy theory of smooth spaces","authors":"Severin Bunk","doi":"10.1007/s40062-022-00318-7","DOIUrl":null,"url":null,"abstract":"<div><p>Simplicial presheaves on cartesian spaces provide a general notion of smooth spaces. There is a corresponding smooth version of the singular complex functor, which maps smooth spaces to simplicial sets. We consider the localisation of the (projective or injective) model category of smooth spaces at the morphisms which become weak equivalences under the singular complex functor. We prove that this localisation agrees with a motivic-style <span>\\(\\mathbb {R}\\)</span>-localisation of the model category of smooth spaces. Further, we exhibit the singular complex functor for smooth spaces as one of several Quillen equivalences between model categories for spaces and the above <span>\\(\\mathbb {R}\\)</span>-local model category of smooth spaces. In the process, we show that the singular complex functor agrees with the homotopy colimit functor up to a natural zig-zag of weak equivalences. We provide a functorial fibrant replacement in the <span>\\(\\mathbb {R}\\)</span>-local model category of smooth spaces and use this to compute mapping spaces in terms of singular complexes. Finally, we explain the relation of our fibrant replacement to the concordance sheaf construction introduced recently by Berwick-Evans, Boavida de Brito and Pavlov.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00318-7.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00318-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Simplicial presheaves on cartesian spaces provide a general notion of smooth spaces. There is a corresponding smooth version of the singular complex functor, which maps smooth spaces to simplicial sets. We consider the localisation of the (projective or injective) model category of smooth spaces at the morphisms which become weak equivalences under the singular complex functor. We prove that this localisation agrees with a motivic-style \(\mathbb {R}\)-localisation of the model category of smooth spaces. Further, we exhibit the singular complex functor for smooth spaces as one of several Quillen equivalences between model categories for spaces and the above \(\mathbb {R}\)-local model category of smooth spaces. In the process, we show that the singular complex functor agrees with the homotopy colimit functor up to a natural zig-zag of weak equivalences. We provide a functorial fibrant replacement in the \(\mathbb {R}\)-local model category of smooth spaces and use this to compute mapping spaces in terms of singular complexes. Finally, we explain the relation of our fibrant replacement to the concordance sheaf construction introduced recently by Berwick-Evans, Boavida de Brito and Pavlov.

Abstract Image

分享
查看原文
光滑空间的\(\mathbb {R}\) -局部同伦理论
笛卡尔空间上的简单预轴提供了光滑空间的一般概念。有一个对应的奇异复函子的光滑版本,它将光滑空间映射到简单集合。考虑光滑空间在奇异复函子下成为弱等价的态射处的(射影或内射)模型范畴的局部化。我们证明了这种局部化符合光滑空间模型范畴的一个动机风格\(\mathbb {R}\) -局部化。进一步,我们展示了光滑空间的奇异复函子作为空间的模型类别与上述\(\mathbb {R}\) -光滑空间的局部模型类别之间的几个Quillen等价之一。在此过程中,我们证明了奇异复函子与同伦极限函子在弱等价的自然之字形上是一致的。我们在光滑空间的\(\mathbb {R}\) -局部模型范畴中提供了一个泛函纤维替换,并用它来计算奇异复形的映射空间。最后,我们解释了我们的纤维替换与最近由Berwick-Evans, Boavida de Brito和Pavlov引入的协和束结构的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信