PLoS Biology最新文献

筛选
英文 中文
MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. MosAIC:具有高质量基因组组装的蚊子相关细菌注释集。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-15 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002897
Aidan Foo, Laura E Brettell, Holly L Nichols, Miguel Medina Muñoz, Jessica A Lysne, Vishaal Dhokiya, Ananya F Hoque, Doug E Brackney, Eric P Caragata, Michael L Hutchinson, Marcelo Jacobs-Lorena, David J Lampe, Edwige Martin, Claire Valiente Moro, Michael Povelones, Sarah M Short, Blaire Steven, Jiannong Xu, Timothy D Paustian, Michelle R Rondon, Grant L Hughes, Kerri L Coon, Eva Heinz
{"title":"MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies.","authors":"Aidan Foo, Laura E Brettell, Holly L Nichols, Miguel Medina Muñoz, Jessica A Lysne, Vishaal Dhokiya, Ananya F Hoque, Doug E Brackney, Eric P Caragata, Michael L Hutchinson, Marcelo Jacobs-Lorena, David J Lampe, Edwige Martin, Claire Valiente Moro, Michael Povelones, Sarah M Short, Blaire Steven, Jiannong Xu, Timothy D Paustian, Michelle R Rondon, Grant L Hughes, Kerri L Coon, Eva Heinz","doi":"10.1371/journal.pbio.3002897","DOIUrl":"10.1371/journal.pbio.3002897","url":null,"abstract":"<p><p>Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002897"},"PeriodicalIF":9.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Social learning is triggered by environmental cues in immigrant birds. 移民鸟类的社会学习是由环境线索引发的。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-15 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002904
Rachel A Harrison
{"title":"Social learning is triggered by environmental cues in immigrant birds.","authors":"Rachel A Harrison","doi":"10.1371/journal.pbio.3002904","DOIUrl":"10.1371/journal.pbio.3002904","url":null,"abstract":"<p><p>After dispersal, what cues trigger social learning in immigrants? A new study in wild-caught great tits in PLOS Biology suggests that changes in the physical environment, rather than the social environment, are key in prompting social learning by immigrants.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002904"},"PeriodicalIF":9.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immigrant birds learn from socially observed differences in payoffs when their environment changes. 当环境发生变化时,移民鸟类会从社会观察到的回报差异中学习。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-14 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002699
Michael Chimento, Gustavo Alarcón-Nieto, Lucy M Aplin
{"title":"Immigrant birds learn from socially observed differences in payoffs when their environment changes.","authors":"Michael Chimento, Gustavo Alarcón-Nieto, Lucy M Aplin","doi":"10.1371/journal.pbio.3002699","DOIUrl":"10.1371/journal.pbio.3002699","url":null,"abstract":"<p><p>Longstanding theory predicts that strategic flexibility in when and how to use social information can help individuals make adaptive decisions, especially when environments are temporally or spatially variable. A short-term increase in reliance on social information under these conditions has been experimentally shown in primates, including humans, but whether this occurs in other taxa is unknown. We asked whether migration between spatially variable environments affected social information use with a large-scale cultural diffusion experiment with wild great tits (Parus major) in captivity, a small passerine bird that can socially learn novel behaviors. We simulated an immigration event where knowledgeable birds were exchanged between groups with opposing preferences for a socially learned foraging puzzle, living in similar or different environments. We found evidence that both immigrants and residents were influenced by social information and attended to the rewards that others received. Our analysis supported the use of a payoff-biased social learning by immigrants when both resources and habitat features were spatially variable. In contrast, immigrants relied more-so on individual learning when payoffs or the environment were unchanged. In summary, our results suggest that great tits assess the payoffs others receive and are more influenced by socially observed differences in payoffs when environmental cues differ in their new environment. Our results provide experimental support for the hypothesis that spatial variability is a strong driver for the evolution of social learning strategies.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002699"},"PeriodicalIF":9.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain. 从青春期到成年期,决策噪音的减少会促进更复杂选择行为的增加和成绩的提高。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-14 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002877
Vanessa Scholz, Maria Waltmann, Nadine Herzog, Annette Horstmann, Lorenz Deserno
{"title":"Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain.","authors":"Vanessa Scholz, Maria Waltmann, Nadine Herzog, Annette Horstmann, Lorenz Deserno","doi":"10.1371/journal.pbio.3002877","DOIUrl":"10.1371/journal.pbio.3002877","url":null,"abstract":"<p><p>Learning and decision-making undergo substantial developmental changes, with adolescence being a particular vulnerable window of opportunity. In adolescents, developmental changes in specific choice behaviors have been observed (e.g., goal-directed behavior, motivational influences over choice). Elevated levels of decision noise, i.e., choosing suboptimal options, were reported consistently in adolescents. However, it remains unknown whether these observations, the development of specific and more sophisticated choice processes and higher decision noise, are independent or related. It is conceivable, but has not yet been investigated, that the development of specific choice processes might be impacted by age-dependent changes in decision noise. To answer this, we examined 93 participants (12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/NoGo task assessing motivational influences over choices, a reversal learning task capturing adaptive decision-making in response to environmental changes, and a sequential choice task measuring goal-directed behavior. This allowed testing of (1) cross-task generalization of computational parameters focusing on decision noise; and (2) assessment of mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-dependent increases in more sophisticated choice behaviors and performance gain. Our findings provide novel insights into the computational processes underlying developmental changes in decision-making: namely a vital role of seemingly unspecific changes in noise in the specific development of more complex choice components. Studying the neurocomputational mechanisms of how varying levels of noise impact distinct aspects of learning and decision processes may also be key to better understand the developmental onset of psychiatric diseases.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002877"},"PeriodicalIF":9.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal integration of contextual and sensory information within the cortical hierarchy in human pain experience. 人类疼痛体验中大脑皮层对上下文信息和感觉信息的时空整合。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-13 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002910
Suhwan Gim, Seok-Jun Hong, Elizabeth A Reynolds Losin, Choong-Wan Woo
{"title":"Spatiotemporal integration of contextual and sensory information within the cortical hierarchy in human pain experience.","authors":"Suhwan Gim, Seok-Jun Hong, Elizabeth A Reynolds Losin, Choong-Wan Woo","doi":"10.1371/journal.pbio.3002910","DOIUrl":"10.1371/journal.pbio.3002910","url":null,"abstract":"<p><p>Pain is not a mere reflection of noxious input. Rather, it is constructed through the dynamic integration of current predictions with incoming sensory input. However, the temporal dynamics of the behavioral and neural processes underpinning this integration remain elusive. In the current study involving 59 human participants, we identified a series of brain mediators that integrated cue-induced expectations with noxious inputs into ongoing pain predictions using a semicircular scale designed to capture rating trajectories. Temporal mediation analysis revealed that during the early-to-mid stages of integration, the frontoparietal and dorsal attention network regions, such as the lateral prefrontal, premotor, and parietal cortex, mediated the cue effects. Conversely, during the mid-to-late stages of integration, the somatomotor network regions mediated the effects of stimulus intensity, suggesting that the integration occurs along the cortical hierarchy from the association to sensorimotor brain systems. Our findings advance the understanding of how the brain integrates contextual and sensory information into pain experience over time.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002910"},"PeriodicalIF":9.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Youthful insight: Nitrogen sequestration in larvae provides clues to coral bleaching. 年轻的洞察力幼虫体内的固氮作用为珊瑚白化提供了线索。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-13 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002890
Christian R Voolstra
{"title":"Youthful insight: Nitrogen sequestration in larvae provides clues to coral bleaching.","authors":"Christian R Voolstra","doi":"10.1371/journal.pbio.3002890","DOIUrl":"10.1371/journal.pbio.3002890","url":null,"abstract":"<p><p>Impaired nutrient cycling under thermal stress foregoes coral bleaching, the loss of symbiotic algae. A new study in PLOS Biology sheds light on how coral larvae avoid bleaching through nitrogen sequestration to uphold glucose translocation from their algal symbionts.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002890"},"PeriodicalIF":9.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature. 珊瑚幼虫增加氮同化,以稳定藻类共生关系,并在温度升高的情况下抵御白化现象。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-12 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002875
Ariana S Huffmyer, Jill Ashey, Emma Strand, Eric N Chiles, Xiaoyang Su, Hollie M Putnam
{"title":"Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature.","authors":"Ariana S Huffmyer, Jill Ashey, Emma Strand, Eric N Chiles, Xiaoyang Su, Hollie M Putnam","doi":"10.1371/journal.pbio.3002875","DOIUrl":"10.1371/journal.pbio.3002875","url":null,"abstract":"<p><p>Rising sea surface temperatures are increasingly causing breakdown in the nutritional relationship between corals and algal endosymbionts (Symbiodiniaceae), threatening the basis of coral reef ecosystems and highlighting the critical role of coral reproduction in reef maintenance. The effects of thermal stress on metabolic exchange (i.e., transfer of fixed carbon photosynthates from symbiont to host) during sensitive early life stages, however, remains understudied. We exposed symbiotic Montipora capitata coral larvae in Hawai'i to high temperature (+2.5°C for 3 days), assessed rates of photosynthesis and respiration, and used stable isotope tracing (4 mM 13C sodium bicarbonate; 4.5 h) to quantify metabolite exchange. While larvae did not show any signs of bleaching and did not experience declines in survival and settlement, metabolic depression was significant under high temperature, indicated by a 19% reduction in respiration rates, but with no change in photosynthesis. Larvae exposed to high temperature showed evidence for maintained translocation of a major photosynthate, glucose, from the symbiont, but there was reduced metabolism of glucose through central carbon metabolism (i.e., glycolysis). The larval host invested in nitrogen cycling by increasing ammonium assimilation, urea metabolism, and sequestration of nitrogen into dipeptides, a mechanism that may support the maintenance of glucose translocation under thermal stress. Host nitrogen assimilation via dipeptide synthesis appears to be used for nitrogen limitation to the Symbiodiniaceae, and we hypothesize that nitrogen limitation contributes to retention of fixed carbon by favoring photosynthate translocation to the host. Collectively, our findings indicate that although these larvae are susceptible to metabolic stress under high temperature, diverting energy to nitrogen assimilation to maintain symbiont population density, photosynthesis, and carbon translocation may allow larvae to avoid bleaching and highlights potential life stage specific metabolic responses to stress.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002875"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionarily conserved brainstem architecture enables gravity-guided vertical navigation. 进化保守的脑干结构实现了重力引导的垂直导航。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-12 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002902
Yunlu Zhu, Hannah Gelnaw, Franziska Auer, Kyla R Hamling, David E Ehrlich, David Schoppik
{"title":"Evolutionarily conserved brainstem architecture enables gravity-guided vertical navigation.","authors":"Yunlu Zhu, Hannah Gelnaw, Franziska Auer, Kyla R Hamling, David E Ehrlich, David Schoppik","doi":"10.1371/journal.pbio.3002902","DOIUrl":"10.1371/journal.pbio.3002902","url":null,"abstract":"<p><p>The sensation of gravity anchors our perception of the environment and is important for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to less effective vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move effectively through their environment.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002902"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. 对 H5 血凝素进行深度突变扫描,为流感病毒监测提供信息。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-12 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002916
Bernadeta Dadonaite, Jenny J Ahn, Jordan T Ort, Jin Yu, Colleen Furey, Annie Dosey, William W Hannon, Amy L Vincent Baker, Richard J Webby, Neil P King, Yan Liu, Scott E Hensley, Thomas P Peacock, Louise H Moncla, Jesse D Bloom
{"title":"Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance.","authors":"Bernadeta Dadonaite, Jenny J Ahn, Jordan T Ort, Jin Yu, Colleen Furey, Annie Dosey, William W Hannon, Amy L Vincent Baker, Richard J Webby, Neil P King, Yan Liu, Scott E Hensley, Thomas P Peacock, Louise H Moncla, Jesse D Bloom","doi":"10.1371/journal.pbio.3002916","DOIUrl":"10.1371/journal.pbio.3002916","url":null,"abstract":"<p><p>H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002916"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis. 核β-catenin对早期海胆胚胎发生的时空要求
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-12 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002880
Guy Lhomond, Michael Schubert, Jenifer Croce
{"title":"Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis.","authors":"Guy Lhomond, Michael Schubert, Jenifer Croce","doi":"10.1371/journal.pbio.3002880","DOIUrl":"10.1371/journal.pbio.3002880","url":null,"abstract":"<p><p>Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin during early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production and that the longest duration is required for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity after their specification to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002880"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信