PLoS BiologyPub Date : 2025-01-30eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002805
César R Nufio, Monica M Sheffer, Julia M Smith, Michael T Troutman, Simran J Bawa, Ebony D Taylor, Sean D Schoville, Caroline M Williams, Lauren B Buckley
{"title":"Insect size responses to climate change vary across elevations according to seasonal timing.","authors":"César R Nufio, Monica M Sheffer, Julia M Smith, Michael T Troutman, Simran J Bawa, Ebony D Taylor, Sean D Schoville, Caroline M Williams, Lauren B Buckley","doi":"10.1371/journal.pbio.3002805","DOIUrl":"10.1371/journal.pbio.3002805","url":null,"abstract":"<p><p>Body size declines are a common response to warming via both plasticity and evolution, but variable size responses have been observed for terrestrial ectotherms. We investigate how temperature-dependent development and growth rates in ectothermic organisms induce variation in size responses. Leveraging long-term data for six montane grasshopper species spanning 1,768-3 901 m, we detect size shifts since ~1960 that depend on elevation and species' seasonal timing. Size shifts have been concentrated at low elevations, with the early emerging species (those that overwinter as juveniles) increasing in size, while later season species are becoming smaller. Interannual temperature variation accounts for the size shifts. The earliest season species may be able to take advantage of warmer conditions accelerating growth during early spring development, whereas warm temperatures may adversely impact later season species via mechanisms such as increased rates of energy use or thermal stress. Grasshoppers tend to capitalize on warm conditions by both getting bigger and reaching adulthood earlier. Our analysis further reinforces the need to move beyond expectations of universal responses to climate change to consider how environmental exposure and sensitivity vary across elevations and life histories.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002805"},"PeriodicalIF":9.8,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2025-01-29eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002995
Juliana Sánchez-Posada, Christopher J Derrick, Emily S Noël
{"title":"morphoHeart: A quantitative tool for integrated 3D morphometric analyses of heart and ECM during embryonic development.","authors":"Juliana Sánchez-Posada, Christopher J Derrick, Emily S Noël","doi":"10.1371/journal.pbio.3002995","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002995","url":null,"abstract":"<p><p>Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos. morphoHeart reveals that the ECM undergoes regional dynamic expansion and reduction during cardiac development, concomitant with chamber-specific morphological maturation. We use morphoHeart to demonstrate that regionalised ECM expansion driven by the ECM crosslinker Hapln1a promotes atrial lumen expansion during heart development. Finally, morphoHeart's GUI expands its use beyond that of cardiac tissue, allowing its segmentation and morphometric analysis tools to be applied to z-stack images of any fluorescently labelled tissue.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002995"},"PeriodicalIF":9.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2025-01-29eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002998
Liam C Hunt, Michelle Curley, Kudzai Nyamkondiwa, Anna Stephan, Jianqin Jiao, Kanisha Kavdia, Vishwajeeth R Pagala, Junmin Peng, Fabio Demontis
{"title":"The ubiquitin-conjugating enzyme UBE2D maintains a youthful proteome and ensures protein quality control during aging by sustaining proteasome activity.","authors":"Liam C Hunt, Michelle Curley, Kudzai Nyamkondiwa, Anna Stephan, Jianqin Jiao, Kanisha Kavdia, Vishwajeeth R Pagala, Junmin Peng, Fabio Demontis","doi":"10.1371/journal.pbio.3002998","DOIUrl":"10.1371/journal.pbio.3002998","url":null,"abstract":"<p><p>Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Mechanistically, UBE2D/eff is necessary to maintain optimal proteasome function: UBE2D/eff knockdown reduces the proteolytic activity of the proteasome, and this is rescued by transgenic expression of human UBE2D2, an eff homolog. Likewise, human UBE2D2 partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi and re-establishes the physiological levels of effRNAi-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. However, some of the proteins that are concertedly up-regulated by aging and effRNAi are proteostasis regulators (e.g., chaperones and Pomp) that are transcriptionally induced presumably as part of an adaptive stress response to the loss of proteostasis. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002998"},"PeriodicalIF":9.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2025-01-29eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002748
Ashwin Seetharaman, Himani Galagali, Elizabeth Linarte, Mona H X Liu, Jennifer D Cohen, Kashish Chetal, Ruslan Sadreyev, Alex J Tate, Taiowa A Montgomery, Gary Ruvkun
{"title":"Decreased SynMuv B gene activity in response to viral infection leads to activation of the antiviral RNAi pathway in C. elegans.","authors":"Ashwin Seetharaman, Himani Galagali, Elizabeth Linarte, Mona H X Liu, Jennifer D Cohen, Kashish Chetal, Ruslan Sadreyev, Alex J Tate, Taiowa A Montgomery, Gary Ruvkun","doi":"10.1371/journal.pbio.3002748","DOIUrl":"10.1371/journal.pbio.3002748","url":null,"abstract":"<p><p>RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense. About one-third of the score of mutants that enhance RNAi are in synMuv B genes, identified 30 years ago in unrelated screens for increased growth factor signaling. Many synMuv B genes encode dREAM complex chromatin-regulatory proteins found in nearly all animals and plants. We show that mRNAs which are highly induced in synMuv B mutants are congruent with those induced by Orsay RNA virus infection, suggesting that the enhanced RNAi of synMuv B mutants may also be triggered by down-regulation of synMuvB gene activity in an Orsay virus infection of wild type. The multivulval (Muv) phenotype of synMuv B mutants requires the presence of a second nematode-specific synMuv A gene mutation, but the enhanced RNAi of synMuv B mutants does not require a second synMuv A mutation. To test if Orsay viral infection down-regulates synMuv B gene activity, we infected a single synMuv A mutant with Orsay virus and found that a Muv phenotype could be induced. Thus, decreased synMuv B gene activity is part of the normal C. elegans viral defense response. In support of the model that decreased syn- Muv B gene activity enhances antiviral response, we found that synMuv B mutants have 50 to 100× lower viral RNA levels during an Orsay virus infection than wild type. Thus down-regulation of synMuv B activity to enhance RNAi is a key component in the defense response to viral infection. Small RNA deep sequencing analysis of dREAM complex mutants revealed siRNA profiles indicative of such a response. Thus, the pan-eukaryotic synMuv B genes constitute an element in C. elegans antiviral defense which is conserved across many eukaryotes where it also may act in viral defense. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002748"},"PeriodicalIF":9.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2025-01-28eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3003003
Xiaowen Chen, Joanna Tober, Martin Dominguez, Alan T Tang, Jenna Bockman, Jisheng Yang, Sneha Mani, Chin Nien Lee, Mei Chen, Triloshan Thillaikumaran, Patricia Mericko-Ishizuka, Monica Mainigi, Nancy A Speck, Mark L Kahn
{"title":"Lineage tracing studies suggest that the placenta is not a de novo source of hematopoietic stem cells.","authors":"Xiaowen Chen, Joanna Tober, Martin Dominguez, Alan T Tang, Jenna Bockman, Jisheng Yang, Sneha Mani, Chin Nien Lee, Mei Chen, Triloshan Thillaikumaran, Patricia Mericko-Ishizuka, Monica Mainigi, Nancy A Speck, Mark L Kahn","doi":"10.1371/journal.pbio.3003003","DOIUrl":"10.1371/journal.pbio.3003003","url":null,"abstract":"<p><p>Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs. However, during human gestation HSPCs arise in the aorta considerably earlier than when they can first be detected in the placenta, suggesting that the placenta may primarily serve as a niche. We found that the Runx1 transcription factor, which is required to generate HSPCs from HECs, is not expressed by mouse placental ECs. To definitively determine whether the mouse placenta is a site of HSPC emergence, we performed lineage tracing experiments with a Hoxa13Cre allele that specifically labels ECs in the placenta and umbilical cord (UC), but not in the yolk sac or embryo. Immunostaining revealed Hoxa13Cre lineage-traced HECs and HSPCs in the UC, a known site of HECs, but not the placenta. Consistent with these findings, ECs harvested from the E10.5 aorta and UC, but not the placenta, gave rise to hematopoietic cells ex vivo, while colony forming assays using E14.5 fetal liver revealed only 2% of HSPCs arose from Hoxa13-expressing precursors. In contrast, the pan-EC Cdh5-CreERT2 allele labeled most HSPCs in the mouse placenta. Lastly, we found that RUNX1 and other HEC genes were not expressed in first-trimester human placenta villous ECs, suggesting that human placenta is not hemogenic. Our findings demonstrate that the placenta functions as a site for expansion of HSPCs that arise within the embryo proper and is not a primary site of HSPC emergence.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3003003"},"PeriodicalIF":9.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2025-01-28eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002997
Tania Veuthey, Jeremy T Florman, Sebastián Giunti, Stefano Romussi, María José De Rosa, Mark J Alkema, Diego Rayes
{"title":"The neurohormone tyramine stimulates the secretion of an insulin-like peptide from the Caenorhabditis elegans intestine to modulate the systemic stress response.","authors":"Tania Veuthey, Jeremy T Florman, Sebastián Giunti, Stefano Romussi, María José De Rosa, Mark J Alkema, Diego Rayes","doi":"10.1371/journal.pbio.3002997","DOIUrl":"10.1371/journal.pbio.3002997","url":null,"abstract":"<p><p>The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, insulin-3 (INS-3), plays a crucial role in modulating the response to various environmental stressors in C. elegans. ins-3 mutants display increased resistance to heat, oxidative stress, and starvation; however, this advantage is countered by slower reproductive development under favorable conditions. We find that ins-3 expression is downregulated in response to environmental stressors, whereas, the neurohormone tyramine, which is released during the acute flight response, increases ins-3 expression. We show that tyramine induces intestinal calcium (Ca2+) transients through the activation of the TYRA-3 receptor. Our data support a model in which tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine via the activation of a TYRA-3-Gαq-IP3 pathway. The release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO. These studies offer mechanistic insights into a brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stressors.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002997"},"PeriodicalIF":9.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supraspinal facilitation of painful stimuli by glutamatergic innervation from the retrosplenial to the anterior cingulate cortex.","authors":"Shun Hao, Man Xue, Qi-Yu Chen, Jinjin Wan, Yu-Jie Ma, Wantong Shi, Xuanying Chen, Xu-Hui Li, Jing-Shan Lu, Fang Xu, Guo-Qiang Bi, Wucheng Tao, Min Zhuo","doi":"10.1371/journal.pbio.3003011","DOIUrl":"10.1371/journal.pbio.3003011","url":null,"abstract":"<p><p>The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood. In this study, we employed a combination of whole-brain imaging, in vitro electrophysiology, and two-photon calcium imaging techniques to confirm the presence of direct excitatory glutamatergic projections from the RSC to the ACC in mice. This excitatory transmission is predominantly mediated by the postsynaptic AMPA receptors. Furthermore, the activation of the RSC-ACC projections through opto-/chemogenetics significantly facilitated the behavioral responses to both mechanical and thermal nociceptive stimuli in adult mice. Notably, this activation did not influence spinal nociceptive responses in the tail-flick test, nor did it affect anxiety-like or aversive behaviors. These findings indicate that the RSC-ACC glutamatergic pathway modulates nociceptive perception primarily at the supraspinal cortical level. We have identified a novel cortico-cortical facilitatory pathway that contributes to nociceptive processing in the cingulate cortex. The RSC-ACC pathway probably serves to integrate memory engrams with pain perception in both humans and animals.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3003011"},"PeriodicalIF":9.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2025-01-27eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3003004
Nicholas Raun, Spencer G Jones, Olivia Kerr, Crystal Keung, Emily F Butler, Kumari Alka, Jonathan D Krupski, Robert A Reid-Taylor, Veyan Ibrahim, MacKayla Williams, Deniz Top, Jamie M Kramer
{"title":"Trithorax regulates long-term memory in Drosophila through epigenetic maintenance of mushroom body metabolic state and translation capacity.","authors":"Nicholas Raun, Spencer G Jones, Olivia Kerr, Crystal Keung, Emily F Butler, Kumari Alka, Jonathan D Krupski, Robert A Reid-Taylor, Veyan Ibrahim, MacKayla Williams, Deniz Top, Jamie M Kramer","doi":"10.1371/journal.pbio.3003004","DOIUrl":"10.1371/journal.pbio.3003004","url":null,"abstract":"<p><p>The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh). Through these key targets, Trx facilitates a metabolic state characterized by high lactate levels in MBγ neurons. This metabolic state supports a high capacity for protein translation, a process that is essential for LTM, but not STM. These data suggest that Trx, a classic regulator of cell type specification during development, has additional functions in maintaining underappreciated aspects of postmitotic neuron identity, such as metabolic state. Our work supports a body of evidence suggesting that a high capacity for energy metabolism is an essential cell identity characteristic for neurons that mediate LTM.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3003004"},"PeriodicalIF":9.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2025-01-27eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3003008
Panagiotis Sapountzis, Alexandra Antoniadou, Georgia G Gregoriou
{"title":"Diverse neuronal activity patterns contribute to the control of distraction in the prefrontal and parietal cortex.","authors":"Panagiotis Sapountzis, Alexandra Antoniadou, Georgia G Gregoriou","doi":"10.1371/journal.pbio.3003008","DOIUrl":"10.1371/journal.pbio.3003008","url":null,"abstract":"<p><p>Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye field (FEF) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor. We found that in both areas, salient distractors are encoded by both response enhancement and suppression by distinct neuronal populations. In FEF, a larger proportion of units displayed suppression of responses to the salient distractor compared to LIP, with suppression effects in FEF being correlated with search time. Moreover, in FEF but not in LIP, the suppression for the salient distractor compared to non-salient distractors that shared the target color could not be accounted for by an enhancement of target features. These results reveal a distinct contribution of FEF in the suppression of salient distractors. Critically, we found that in both areas, the population level representations of the target and singleton locations were not orthogonal, suggesting a mechanism of interference from salient stimuli.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3003008"},"PeriodicalIF":9.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rspo3-mediated metabolic liver zonation regulates systemic glucose metabolism and body mass in mice.","authors":"Kenji Uno, Takuya Uchino, Takashi Suzuki, Yohei Sayama, Naoki Edo, Kiyoko Uno-Eder, Koji Morita, Toshio Ishikawa, Miho Koizumi, Hiroaki Honda, Hideki Katagiri, Kazuhisa Tsukamoto","doi":"10.1371/journal.pbio.3002955","DOIUrl":"10.1371/journal.pbio.3002955","url":null,"abstract":"<p><p>The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood. In this study, we analyze the local functions of Rspo3 in the liver and the remote actions of hepatic Rspo3 on other organs of the body by using murine models. Rspo3 expression analysis shows that Rspo3 expression patterns are spatiotemporally controlled in the murine liver such that it locates in the pericentral zones and converges after feeding, and the dynamics of these processes are disturbed in obesity. We find that viral-mediated induction of Rspo3 in hepatic tissue of obesity improves insulin resistance and prevents body weight gain by restoring attenuated organ insulin sensitivities, reducing adipose tissue enlargement and reversing overstimulated adaptive thermogenesis. Denervation of the hepatic vagus suppresses these remote effects, derived from hepatic Rspo3 induction, toward adipose tissues and skeletal muscle, suggesting that signals are transduced via the neuronal communication consisting of afferent vagal and efferent sympathetic nerves. Furthermore, the non-neuronal inter-organ communication up-regulating muscle lipid utilization is partially responsible for the ameliorations of both fatty liver development and reduced skeletal muscle quality in obesity. In contrast, hepatic Rspo3 suppression through Cre-LoxP-mediated recombination system exacerbates diabetes due to glucose intolerance and insulin resistance, promotes fatty liver development and decreases skeletal muscle quality, resulting in obesity. Taken together, our study results reveal that modulation of hepatic Rspo3 contributes to maintaining systemic glucose metabolism and body composition via a newly identified inter-organ communication mechanism.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002955"},"PeriodicalIF":9.8,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}