PLoS Biology最新文献

筛选
英文 中文
Quorum sensing in Vibrio controls carbon metabolism to optimize growth in changing environmental conditions. 弧菌的法定量感应控制碳代谢,以优化在不断变化的环境条件下的生长。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-11 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002891
Chelsea A Simpson, Zach R Celentano, Nicholas W Haas, James B McKinlay, Carey D Nadell, Julia C van Kessel
{"title":"Quorum sensing in Vibrio controls carbon metabolism to optimize growth in changing environmental conditions.","authors":"Chelsea A Simpson, Zach R Celentano, Nicholas W Haas, James B McKinlay, Carey D Nadell, Julia C van Kessel","doi":"10.1371/journal.pbio.3002891","DOIUrl":"10.1371/journal.pbio.3002891","url":null,"abstract":"<p><p>Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell-cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in which Vibrio cells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically \"locked\" at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). In mixed cultures, QS mutant strains initially coexist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links nutrient availability and cell density, preventing accumulation of QS-defective mutants.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002891"},"PeriodicalIF":9.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial calcium uptake orchestrates vertebrate pigmentation via transcriptional regulation of keratin filaments. 线粒体钙摄取通过角蛋白丝的转录调控协调脊椎动物的色素沉着
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-11 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002895
Jyoti Tanwar, Kriti Ahuja, Akshay Sharma, Paras Sehgal, Gyan Ranjan, Farina Sultan, Anushka Agrawal, Donato D'Angelo, Anshu Priya, Vamsi K Yenamandra, Archana Singh, Anna Raffaello, Muniswamy Madesh, Rosario Rizzuto, Sridhar Sivasubbu, Rajender K Motiani
{"title":"Mitochondrial calcium uptake orchestrates vertebrate pigmentation via transcriptional regulation of keratin filaments.","authors":"Jyoti Tanwar, Kriti Ahuja, Akshay Sharma, Paras Sehgal, Gyan Ranjan, Farina Sultan, Anushka Agrawal, Donato D'Angelo, Anshu Priya, Vamsi K Yenamandra, Archana Singh, Anna Raffaello, Muniswamy Madesh, Rosario Rizzuto, Sridhar Sivasubbu, Rajender K Motiani","doi":"10.1371/journal.pbio.3002895","DOIUrl":"10.1371/journal.pbio.3002895","url":null,"abstract":"<p><p>Mitochondria regulate several physiological functions through mitochondrial Ca2+ dynamics. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrate that mitochondrial Ca2+ uniporter (MCU) is crucial for melanogenesis while MCU rheostat, MCUb negatively control melanogenesis. Zebrafish, MCU+/- and MCUb-/- mice models show that MCU complex drives pigmentation in vivo. Mechanistically, MCU silencing activates transcription factor NFAT2 to induce expression of keratin (5, 7, and 8) filaments. Interestingly, keratin5 in turn augments mitochondrial Ca2+ uptake and potentiates melanogenesis by regulating melanosome biogenesis and maturation. Hence this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and pigmentation. Notably, mitoxantrone, an FDA approved drug that inhibits MCU, reduces pigmentation thereby highlighting therapeutic potential of targeting mitochondrial Ca2+ uptake for clinical management of pigmentary disorders. Taken together, we reveal an MCU-NFAT2-Keratin5 driven signaling axis that acts as a critical determinant of mitochondrial Ca2+ uptake and pigmentation. Given the vital role of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop could be operational in a variety of other patho-physiological processes.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002895"},"PeriodicalIF":9.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-level visual prediction errors in early visual cortex. 早期视觉皮层的高级视觉预测错误
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-11 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002829
David Richter, Tim C Kietzmann, Floris P de Lange
{"title":"High-level visual prediction errors in early visual cortex.","authors":"David Richter, Tim C Kietzmann, Floris P de Lange","doi":"10.1371/journal.pbio.3002829","DOIUrl":"10.1371/journal.pbio.3002829","url":null,"abstract":"<p><p>Perception is shaped by both incoming sensory input and expectations derived from our prior knowledge. Numerous studies have shown stronger neural activity for surprising inputs, suggestive of predictive processing. However, it is largely unclear what predictions are made across the cortical hierarchy, and therefore what kind of surprise drives this up-regulation of activity. Here, we leveraged fMRI in human volunteers and deep neural network (DNN) models to arbitrate between 2 hypotheses: prediction errors may signal a local mismatch between input and expectation at each level of the cortical hierarchy, or prediction errors may be computed at higher levels and the resulting surprise signal is broadcast to earlier areas in the cortical hierarchy. Our results align with the latter hypothesis. Prediction errors in both low- and high-level visual cortex responded to high-level, but not low-level, visual surprise. This scaling with high-level surprise in early visual cortex strongly diverged from feedforward tuning. Combined, our results suggest that high-level predictions constrain sensory processing in earlier areas, thereby aiding perceptual inference.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002829"},"PeriodicalIF":9.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DRN facilitates WUS transcriptional regulatory activity by chromatin remodeling to regulate shoot stem cell homeostasis in Arabidopsis. DRN通过染色质重塑促进WUS转录调控活动,从而调节拟南芥芽干细胞的稳态。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-08 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002878
Linjie Luo, Li Liu, Lili She, Haoran Zhang, Nannan Zhang, Yaqin Wang, Yuting Ni, Fugui Chen, Fengying Wan, Yuqiu Dai, Guoping Zhu, Zhong Zhao
{"title":"DRN facilitates WUS transcriptional regulatory activity by chromatin remodeling to regulate shoot stem cell homeostasis in Arabidopsis.","authors":"Linjie Luo, Li Liu, Lili She, Haoran Zhang, Nannan Zhang, Yaqin Wang, Yuting Ni, Fugui Chen, Fengying Wan, Yuqiu Dai, Guoping Zhu, Zhong Zhao","doi":"10.1371/journal.pbio.3002878","DOIUrl":"10.1371/journal.pbio.3002878","url":null,"abstract":"<p><p>Shoot stem cells, harbored in the shoot apical meristem (SAM), play key roles during post-embryonic development of Arabidopsis and function as the origin of plant aerial tissues. Multiple transcription factors are involved in the sophisticated transcriptional regulation of stem cell homeostasis, with the WUSCHEL (WUS)/CLAVATA3 (CLV3) negative feedback loop playing a central role. WUS acts as a master regulator in maintaining stem cells through its transcriptional regulatory activity including repressive and activating abilities. Although the interaction between WUS and TOPLESS confers the repressive activity of WUS in transcriptional control, the mechanism by which WUS activates gene expression remains elusive. Here, we showed that DORNRÖSCHEN competitively interacts with WUS and disturbs the WUS homodimer, which recruits BRAHMA to activate CLV3 expression via nucleosome depletion for maintaining the stem cell pool.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002878"},"PeriodicalIF":9.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cytoplasmic form of EHMT1N methylates viral proteins to enable inclusion body maturation and efficient viral replication. EHMT1N 的细胞质形式会使病毒蛋白甲基化,从而使包涵体成熟并高效复制病毒。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002871
Kriti Kestur Biligiri, Nishi Raj Sharma, Abhishek Mohanty, Debi Prasad Sarkar, Praveen Kumar Vemula, Shravanti Rampalli
{"title":"A cytoplasmic form of EHMT1N methylates viral proteins to enable inclusion body maturation and efficient viral replication.","authors":"Kriti Kestur Biligiri, Nishi Raj Sharma, Abhishek Mohanty, Debi Prasad Sarkar, Praveen Kumar Vemula, Shravanti Rampalli","doi":"10.1371/journal.pbio.3002871","DOIUrl":"10.1371/journal.pbio.3002871","url":null,"abstract":"<p><p>Protein lysine methyltransferases (PKMTs) methylate histone and non-histone proteins to regulate biological outcomes such as development and disease including viral infection. While PKMTs have been extensively studied for modulating the antiviral responses via host gene regulation, their role in methylation of proteins encoded by viruses and its impact on host-pathogen interactions remain poorly understood. In this study, we discovered distinct nucleo-cytoplasmic form of euchromatic histone methyltransferase 1 (EHMT1N/C), a PKMT, that phase separates into viral inclusion bodies (IBs) upon cytoplasmic RNA-virus infection (Sendai Virus). EHMT1N/C interacts with cytoplasmic EHMT2 and methylates SeV-Nucleoprotein upon infection. Elevated nucleoprotein methylation during infection correlated with coalescence of small IBs into large mature platforms for efficient replication. Inhibition of EHMT activity by pharmacological inhibitors or genetic depletion of EHMT1N/C reduced the size of IBs with a concomitant reduction in replication. Additionally, we also found that EHMT1 condensation is not restricted to SeV alone but was also seen upon pathogenic RNA viral infections caused by Chandipura and Dengue virus. Collectively, our work elucidates a new mechanism by which cytoplasmic EHMT1 acts as proviral host factor to regulate host-pathogen interaction.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002871"},"PeriodicalIF":9.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rho1 and Rgf1 establish a new actin-dependent signal to determine growth poles in yeast independently of microtubules and the Tea1-Tea4 complex. Rho1和Rgf1建立了一种新的肌动蛋白依赖性信号,可独立于微管和Tea1-Tea4复合物决定酵母的生长极。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002491
Patricia Garcia, Ruben Celador, Tomas Edreira, Yolanda Sanchez
{"title":"Rho1 and Rgf1 establish a new actin-dependent signal to determine growth poles in yeast independently of microtubules and the Tea1-Tea4 complex.","authors":"Patricia Garcia, Ruben Celador, Tomas Edreira, Yolanda Sanchez","doi":"10.1371/journal.pbio.3002491","DOIUrl":"10.1371/journal.pbio.3002491","url":null,"abstract":"<p><p>Cellular asymmetry begins with the selection of a discrete point on the cell surface that triggers Rho-GTPases activation and localized assembly of the cytoskeleton to establish new growth zones. The cylindrical shape of fission yeast is organized by microtubules (MT) that deliver the landmark Tea1-Tea4 complex at the cell tips to define the growth poles. However, only a few tea1Δ cells mistaken the direction of growth, indicating that they manage to detect their growth sites. Here, we show that Rgf1 (Rho1-GEF) and Tea4 are components of the same complex and that Rgf1 activity toward Rho1 is required for strengthen Tea4 at the cell tips. Moreover, in cells lacking Tea1, selection of the correct growth site depends on Rgf1 and on a correctly polarized actin cytoskeleton, both necessary for Rho1 activation at the pole. We propose an actin-dependent mechanism driven by Rgf1-Rho1 that marks the poles independently of MTs and the Tea1-Tea4 complex.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002491"},"PeriodicalIF":9.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The strength of interspecies interaction in a microbial community determines its susceptibility to invasion. 微生物群落中种间相互作用的强度决定了其对入侵的敏感性。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002889
Suraya Muzafar, Ramith R Nair, Dan I Andersson, Omar M Warsi
{"title":"The strength of interspecies interaction in a microbial community determines its susceptibility to invasion.","authors":"Suraya Muzafar, Ramith R Nair, Dan I Andersson, Omar M Warsi","doi":"10.1371/journal.pbio.3002889","DOIUrl":"10.1371/journal.pbio.3002889","url":null,"abstract":"<p><p>Previous work shows that a host's resident microbial community can provide resistance against an invading pathogen. However, this community is continuously changing over time due to adaptive mutations, and how these changes affect the invasion resistance of these communities remains poorly understood. To address this knowledge gap, we used an experimental evolution approach in synthetic communities of Escherichia coli and Salmonella Typhimurium to investigate how the invasion resistance of this community against a bacterium expressing a virulent phenotype, i.e., colicin secretion, changes over time. We show that evolved communities accumulate mutations in genes involved in carbon metabolism and motility, while simultaneously becoming less resistant to invasion. By investigating two-species competitions and generating a three-species competition model, we show that this outcome is dependent on the strength of interspecies interactions. Our study demonstrates how adaptive changes in microbial communities can make them more prone to the detrimental effects of an invading species.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002889"},"PeriodicalIF":9.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstructed influenza A/H3N2 infection histories reveal variation in incidence and antibody dynamics over the life course. 重建的甲型 H3N2 流感感染史揭示了生命过程中发病率和抗体动态的变化。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002864
James A Hay, Huachen Zhu, Chao Qiang Jiang, Kin On Kwok, Ruiyin Shen, Adam Kucharski, Bingyi Yang, Jonathan M Read, Justin Lessler, Derek A T Cummings, Steven Riley
{"title":"Reconstructed influenza A/H3N2 infection histories reveal variation in incidence and antibody dynamics over the life course.","authors":"James A Hay, Huachen Zhu, Chao Qiang Jiang, Kin On Kwok, Ruiyin Shen, Adam Kucharski, Bingyi Yang, Jonathan M Read, Justin Lessler, Derek A T Cummings, Steven Riley","doi":"10.1371/journal.pbio.3002864","DOIUrl":"10.1371/journal.pbio.3002864","url":null,"abstract":"<p><p>Humans experience many influenza infections over their lives, resulting in complex and varied immunological histories. Although experimental and quantitative analyses have improved our understanding of the immunological processes defining an individual's antibody repertoire, how these within-host processes are linked to population-level influenza epidemiology in humans remains unclear. Here, we used a multilevel mathematical model to jointly infer antibody dynamics and individual-level lifetime influenza A/H3N2 infection histories for 1,130 individuals in Guangzhou, China, using 67,683 haemagglutination inhibition (HI) assay measurements against 20 A/H3N2 strains from repeat serum samples collected between 2009 and 2015. These estimated infection histories allowed us to reconstruct historical seasonal influenza patterns in humans and to investigate how influenza incidence varies over time, space, and age in this population. We estimated median annual influenza infection rates to be approximately 19% from 1968 to 2015, but with substantial variation between years; 88% of individuals were estimated to have been infected at least once during the study period (2009 to 2015), and 20% were estimated to have 3 or more infections in that time. We inferred decreasing infection rates with increasing age, and found that annual attack rates were highly correlated across all locations, regardless of their distance, suggesting that age has a stronger impact than fine-scale spatial effects in determining an individual's antibody profile. Finally, we reconstructed each individual's expected antibody profile over their lifetime and inferred an age-stratified relationship between probability of infection and HI titre. Our analyses show how multi-strain serological panels provide rich information on long-term epidemiological trends, within-host processes, and immunity when analysed using appropriate inference methods, and adds to our understanding of the life course epidemiology of influenza A/H3N2.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002864"},"PeriodicalIF":9.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial occurrence and symbiont detection in a global sample of lichen metagenomes. 地衣元基因组全球样本中的微生物出现和共生体检测。
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002862
Gulnara Tagirdzhanova, Paul Saary, Ellen S Cameron, Carmen C G Allen, Arkadiy I Garber, David Díaz Escandón, Andrew T Cook, Spencer Goyette, Veera Tuovinen Nogerius, Alfredo Passo, Helmut Mayrhofer, Håkon Holien, Tor Tønsberg, Lisa Y Stein, Robert D Finn, Toby Spribille
{"title":"Microbial occurrence and symbiont detection in a global sample of lichen metagenomes.","authors":"Gulnara Tagirdzhanova, Paul Saary, Ellen S Cameron, Carmen C G Allen, Arkadiy I Garber, David Díaz Escandón, Andrew T Cook, Spencer Goyette, Veera Tuovinen Nogerius, Alfredo Passo, Helmut Mayrhofer, Håkon Holien, Tor Tønsberg, Lisa Y Stein, Robert D Finn, Toby Spribille","doi":"10.1371/journal.pbio.3002862","DOIUrl":"10.1371/journal.pbio.3002862","url":null,"abstract":"<p><p>In lichen research, metagenomes are increasingly being used for evaluating symbiont composition and metabolic potential, but the overall content and limitations of these metagenomes have not been assessed. We reassembled over 400 publicly available metagenomes, generated metagenome-assembled genomes (MAGs), constructed phylogenomic trees, and mapped MAG occurrence and frequency across the data set. Ninety-seven percent of the 1,000 recovered MAGs were bacterial or the fungal symbiont that provides most cellular mass. Our mapping of recovered MAGs provides the most detailed survey to date of bacteria in lichens and shows that 4 family-level lineages from 2 phyla accounted for as many bacterial occurrences in lichens as all other 71 families from 16 phyla combined. Annotation of highly complete bacterial, fungal, and algal MAGs reveals functional profiles that suggest interdigitated vitamin prototrophies and auxotrophies, with most lichen fungi auxotrophic for biotin, most bacteria auxotrophic for thiamine and the few annotated algae with partial or complete pathways for both, suggesting a novel dimension of microbial cross-feeding in lichen symbioses. Contrary to longstanding hypotheses, we found no annotations consistent with nitrogen fixation in bacteria other than known cyanobacterial symbionts. Core lichen symbionts such as algae were recovered as MAGs in only a fraction of the lichen symbioses in which they are known to occur. However, the presence of these and other microbes could be detected at high frequency using small subunit rRNA analysis, including in many lichens in which they are not otherwise recognized to occur. The rate of MAG recovery correlates with sequencing depth, but is almost certainly influenced by biological attributes of organisms that affect the likelihood of DNA extraction, sequencing and successful assembly, including cellular abundance, ploidy and strain co-occurrence. Our results suggest that, though metagenomes are a powerful tool for surveying microbial occurrence, they are of limited use in assessing absence, and their interpretation should be guided by an awareness of the interacting effects of microbial community complexity and sequencing depth.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002862"},"PeriodicalIF":9.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542873/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gather your neurons and model together: Community times ahead. 聚集你的神经元,一起建模:社区时代即将到来
IF 9.8 1区 生物学
PLoS Biology Pub Date : 2024-11-06 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002839
Maria Diamantaki, Athanasia Papoutsi
{"title":"Gather your neurons and model together: Community times ahead.","authors":"Maria Diamantaki, Athanasia Papoutsi","doi":"10.1371/journal.pbio.3002839","DOIUrl":"10.1371/journal.pbio.3002839","url":null,"abstract":"<p><p>Bottom-up, data-driven, large-scale models provide a mechanistic understanding of neuronal functions. A new study in PLOS Biology builds a biologically realistic model of the rodent CA1 region that aims to become an accessible tool for the whole hippocampal community.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002839"},"PeriodicalIF":9.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信