Matthew French, Rosa P Migueles, Alexandra Neaverson, Aishani Chakraborty, Tom Pettini, Benjamin Steventon, Erik Clark, J Kim Dale, Guillaume Blin, Valerie Wilson, Sally Lowell
{"title":"A toolkit for mapping cell identities in relation to neighbors reveals conserved patterning of neuromesodermal progenitor populations.","authors":"Matthew French, Rosa P Migueles, Alexandra Neaverson, Aishani Chakraborty, Tom Pettini, Benjamin Steventon, Erik Clark, J Kim Dale, Guillaume Blin, Valerie Wilson, Sally Lowell","doi":"10.1371/journal.pbio.3003244","DOIUrl":null,"url":null,"abstract":"<p><p>Patterning of cell fates is central to embryonic development, tissue homeostasis, and disease. Quantitative analysis of patterning reveals the logic by which cell-cell interactions orchestrate changes in cell fate. However, it is challenging to quantify patterning when graded changes in identity occur over complex 4D trajectories, or where different cell states are intermingled. Furthermore, comparing patterns across multiple individual embryos, tissues, or organoids is difficult because these often vary in shape and size. This problem is further exacerbated when comparing patterning between species. Here we present a toolkit of computational approaches to tackle these problems. These strategies are based on measuring properties of each cell in relation to the properties of its neighbors to quantify patterning, and on using embryonic landmarks in order to compare these patterns between embryos. We perform detailed neighbor-analysis of the caudal lateral epiblast of E8.5 mouse embryos, revealing local patterning in emergence of early mesoderm cells that is sensitive to inhibition of Notch activity. We extend this toolkit to compare mouse and chick embryos, revealing conserved 3D patterning of the caudal-lateral epiblast that scales across an order of magnitude difference in size between these two species. We also examine 3D patterning of gene expression boundaries across the length of Drosophila embryos. We present a flexible approach to examine the reproducibility of patterning between individuals, to measure phenotypic changes in patterning after experimental manipulation, and to compare of patterning across different scales and tissue architectures.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 7","pages":"e3003244"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003244","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Patterning of cell fates is central to embryonic development, tissue homeostasis, and disease. Quantitative analysis of patterning reveals the logic by which cell-cell interactions orchestrate changes in cell fate. However, it is challenging to quantify patterning when graded changes in identity occur over complex 4D trajectories, or where different cell states are intermingled. Furthermore, comparing patterns across multiple individual embryos, tissues, or organoids is difficult because these often vary in shape and size. This problem is further exacerbated when comparing patterning between species. Here we present a toolkit of computational approaches to tackle these problems. These strategies are based on measuring properties of each cell in relation to the properties of its neighbors to quantify patterning, and on using embryonic landmarks in order to compare these patterns between embryos. We perform detailed neighbor-analysis of the caudal lateral epiblast of E8.5 mouse embryos, revealing local patterning in emergence of early mesoderm cells that is sensitive to inhibition of Notch activity. We extend this toolkit to compare mouse and chick embryos, revealing conserved 3D patterning of the caudal-lateral epiblast that scales across an order of magnitude difference in size between these two species. We also examine 3D patterning of gene expression boundaries across the length of Drosophila embryos. We present a flexible approach to examine the reproducibility of patterning between individuals, to measure phenotypic changes in patterning after experimental manipulation, and to compare of patterning across different scales and tissue architectures.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.