PLoS BiologyPub Date : 2024-11-19eCollection Date: 2024-11-01DOI: 10.1371/journal.pbio.3002855
Charles W Dickey, Ilya A Verzhbinsky, Sophie Kajfez, Burke Q Rosen, Christopher E Gonzalez, Patrick Y Chauvel, Sydney S Cash, Sandipan Pati, Eric Halgren
{"title":"Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans.","authors":"Charles W Dickey, Ilya A Verzhbinsky, Sophie Kajfez, Burke Q Rosen, Christopher E Gonzalez, Patrick Y Chauvel, Sydney S Cash, Sandipan Pati, Eric Halgren","doi":"10.1371/journal.pbio.3002855","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002855","url":null,"abstract":"<p><p>In the neocortex, ~90 Hz ripples couple to ~12 Hz sleep spindles on the ~1 Hz Down-to-Up state transition during non-rapid eye movement sleep. This conjunction of sleep waves is critical for the consolidation of memories into long-term storage. The widespread co-occurrences of ripples (\"co-ripples\") may integrate information across the neocortex and hippocampus to facilitate consolidation. While the thalamus synchronizes spindles and Up states in the cortex for memory, it is not known whether it may also organize co-ripples. Using human intracranial recordings during NREM sleep, we investigated whether cortico-cortical co-ripples and hippocampo-cortical co-ripples are either: (1) driven by directly projected thalamic ripples; or (2) coordinated by propagating thalamic spindles or Up states. We found ripples in the anterior and posterior thalamus, with similar characteristics as hippocampal and cortical ripples, including having a center frequency of ~90 Hz and coupling to local spindles on the Down-to-Up state transition. However, thalamic ripples rarely co-occur or phase-lock with cortical or hippocampal ripples. By contrast, spindles and Up states that propagate from the thalamus strongly coordinate co-ripples in the cortex and hippocampus. Thus, thalamo-cortical spindles and Up states, rather than thalamic ripples, may provide input facilitating spatially distributed co-rippling that integrates information for memory consolidation during sleep in humans.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002855"},"PeriodicalIF":9.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-19eCollection Date: 2024-11-01DOI: 10.1371/journal.pbio.3002909
Lanxin Ji, Iris Menu, Amyn Majbri, Tanya Bhatia, Christopher J Trentacosta, Moriah E Thomason
{"title":"Trajectories of human brain functional connectome maturation across the birth transition.","authors":"Lanxin Ji, Iris Menu, Amyn Majbri, Tanya Bhatia, Christopher J Trentacosta, Moriah E Thomason","doi":"10.1371/journal.pbio.3002909","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002909","url":null,"abstract":"<p><p>Understanding the sequence and timing of brain functional network development at the beginning of human life is critically important from both normative and clinical perspectives. Yet, we presently lack rigorous examination of the longitudinal emergence of human brain functional networks over the birth transition. Leveraging a large, longitudinal perinatal functional magnetic resonance imaging (fMRI) data set, this study models developmental trajectories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational age (GA). The final sample includes 126 fetal scans (GA = 31.36 ± 3.83 weeks) and 58 infant scans (GA = 48.17 ± 3.73 weeks) from 140 unique subjects. In this study, we document the developmental changes of resting-state functional connectivity (RSFC) over the birth transition, evident at both network and graph levels. We observe that growth patterns are regionally specific, with some areas showing minimal RSFC changes, while others exhibit a dramatic increase at birth. Examples with birth-triggered dramatic change include RSFC within the subcortical network, within the superior frontal network, within the occipital-cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral sensorimotor networks and between the bilateral temporal network. Our graph analysis further emphasized the subcortical network as the only region of the brain exhibiting a significant increase in local efficiency around birth, while a concomitant gradual increase was found in global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal period. This work unveils fundamental aspects of early brain development and lays the foundation for future work on the influence of environmental factors on this process.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002909"},"PeriodicalIF":9.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-18eCollection Date: 2024-11-01DOI: 10.1371/journal.pbio.3002879
Olena Kim, Yuji Okamoto, Walter A Kaufmann, Nils Brose, Ryuichi Shigemoto, Peter Jonas
{"title":"Presynaptic cAMP-PKA-mediated potentiation induces reconfiguration of synaptic vesicle pools and channel-vesicle coupling at hippocampal mossy fiber boutons.","authors":"Olena Kim, Yuji Okamoto, Walter A Kaufmann, Nils Brose, Ryuichi Shigemoto, Peter Jonas","doi":"10.1371/journal.pbio.3002879","DOIUrl":"10.1371/journal.pbio.3002879","url":null,"abstract":"<p><p>It is widely believed that information storage in neuronal circuits involves nanoscopic structural changes at synapses, resulting in the formation of synaptic engrams. However, direct evidence for this hypothesis is lacking. To test this conjecture, we combined chemical potentiation, functional analysis by paired pre-postsynaptic recordings, and structural analysis by electron microscopy (EM) and freeze-fracture replica labeling (FRL) at the rodent hippocampal mossy fiber synapse, a key synapse in the trisynaptic circuit of the hippocampus. Biophysical analysis of synaptic transmission revealed that forskolin-induced chemical potentiation increased the readily releasable vesicle pool size and vesicular release probability by 146% and 49%, respectively. Structural analysis of mossy fiber synapses by EM and FRL demonstrated an increase in the number of vesicles close to the plasma membrane and the number of clusters of the priming protein Munc13-1, indicating an increase in the number of both docked and primed vesicles. Furthermore, FRL analysis revealed a significant reduction of the distance between Munc13-1 and CaV2.1 Ca2+ channels, suggesting reconfiguration of the channel-vesicle coupling nanotopography. Our results indicate that presynaptic plasticity is associated with structural reorganization of active zones. We propose that changes in potential nanoscopic organization at synaptic vesicle release sites may be correlates of learning and memory at a plastic central synapse.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002879"},"PeriodicalIF":9.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-18DOI: 10.1371/journal.pbio.3002900
Jingdi Li, Nele Guttmann, Georgia C Drew, Tobias E Hector, Justyna Wolinska, Kayla C King
{"title":"Excess mortality of infected ectotherms induced by warming depends on pathogen kingdom and evolutionary history.","authors":"Jingdi Li, Nele Guttmann, Georgia C Drew, Tobias E Hector, Justyna Wolinska, Kayla C King","doi":"10.1371/journal.pbio.3002900","DOIUrl":"10.1371/journal.pbio.3002900","url":null,"abstract":"<p><p>Climate change is causing extreme heating events and leading to more infectious disease outbreaks, putting species persistence at risk. The extent to which warming temperatures and infection may together impair host health is unclear. Using a meta-analysis of >190 effect sizes representing 101 ectothermic animal host-pathogen systems, we demonstrate that warming significantly increased the mortality of hosts infected by bacterial pathogens. Pathogens that have been evolutionarily established within the host species showed higher virulence under warmer temperatures, too. Conversely, the effect of warming on novel infections-from pathogens without a shared evolutionary history with the host species-were more pronounced with larger differences between compared temperatures. We found that compared to established infections, novel infections were more deadly at lower/baseline temperatures. Moreover, we revealed that the virulence of fungal pathogens increased only when temperatures were shifted upwards towards the pathogen thermal optimum. The magnitude of all these significant effects was not impacted by host life-stage, immune complexity, pathogen inoculation methods, or exposure time. Overall, our findings reveal distinct patterns in changes of pathogen virulence during warming. We highlight the importance of pathogen taxa, thermal optima, and evolutionary history in determining the impact of global change on infection outcomes.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002900"},"PeriodicalIF":9.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-18DOI: 10.1371/journal.pbio.3002843
Farhan Mohammad, Yishan Mai, Joses Ho, Xianyuan Zhang, Stanislav Ott, James Charles Stewart, Adam Claridge-Chang
{"title":"Dopamine neurons that inform Drosophila olfactory memory have distinct, acute functions driving attraction and aversion.","authors":"Farhan Mohammad, Yishan Mai, Joses Ho, Xianyuan Zhang, Stanislav Ott, James Charles Stewart, Adam Claridge-Chang","doi":"10.1371/journal.pbio.3002843","DOIUrl":"10.1371/journal.pbio.3002843","url":null,"abstract":"<p><p>The brain must guide immediate responses to beneficial and harmful stimuli while simultaneously writing memories for future reference. While both immediate actions and reinforcement learning are instructed by dopamine, how dopaminergic systems maintain coherence between these 2 reward functions is unknown. Through optogenetic activation experiments, we showed that the dopamine neurons that inform olfactory memory in Drosophila have a distinct, parallel function driving attraction and aversion (valence). Sensory neurons required for olfactory memory were dispensable to dopaminergic valence. A broadly projecting set of dopaminergic cells had valence that was dependent on dopamine, glutamate, and octopamine. Similarly, a more restricted dopaminergic cluster with attractive valence was reliant on dopamine and glutamate; flies avoided opto-inhibition of this narrow subset, indicating the role of this cluster in controlling ongoing behavior. Dopamine valence was distinct from output-neuron opto-valence in locomotor pattern, strength, and polarity. Overall, our data suggest that dopamine's acute effect on valence provides a mechanism by which a dopaminergic system can coherently write memories to influence future responses while guiding immediate attraction and aversion.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002843"},"PeriodicalIF":9.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-18DOI: 10.1371/journal.pbio.3002907
Emma M Glass, Lillian R Dillard, Glynis L Kolling, Andrew S Warren, Jason A Papin
{"title":"Niche-specific metabolic phenotypes can be used to identify antimicrobial targets in pathogens.","authors":"Emma M Glass, Lillian R Dillard, Glynis L Kolling, Andrew S Warren, Jason A Papin","doi":"10.1371/journal.pbio.3002907","DOIUrl":"10.1371/journal.pbio.3002907","url":null,"abstract":"<p><p>Bacterial pathogens pose a major risk to human health, leading to tens of millions of deaths annually and significant global economic losses. While bacterial infections are typically treated with antibiotic regimens, there has been a rapid emergence of antimicrobial resistant (AMR) bacterial strains due to antibiotic overuse. Because of this, treatment of infections with traditional antimicrobials has become increasingly difficult, necessitating the development of innovative approaches for deeply understanding pathogen function. To combat issues presented by broad- spectrum antibiotics, the idea of narrow-spectrum antibiotics has been previously proposed and explored. Rather than interrupting universal bacterial cellular processes, narrow-spectrum antibiotics work by targeting specific functions or essential genes in certain species or subgroups of bacteria. Here, we generate a collection of genome-scale metabolic network reconstructions (GENREs) of pathogens through an automated computational pipeline. We used these GENREs to identify subgroups of pathogens that share unique metabolic phenotypes and determined that pathogen physiological niche plays a role in the development of unique metabolic function. For example, we identified several unique metabolic phenotypes specific to stomach pathogens. We identified essential genes unique to stomach pathogens in silico and a corresponding inhibitory compound for a uniquely essential gene. We then validated our in silico predictions with an in vitro microbial growth assay. We demonstrated that the inhibition of a uniquely essential gene, thyX, inhibited growth of stomach-specific pathogens exclusively, indicating possible physiological location-specific targeting. This pioneering computational approach could lead to the identification of unique metabolic signatures to inform future targeted, physiological location-specific, antimicrobial therapies, reducing the need for broad-spectrum antibiotics.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002907"},"PeriodicalIF":9.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-15DOI: 10.1371/journal.pbio.3002897
Aidan Foo, Laura E Brettell, Holly L Nichols, Miguel Medina Muñoz, Jessica A Lysne, Vishaal Dhokiya, Ananya F Hoque, Doug E Brackney, Eric P Caragata, Michael L Hutchinson, Marcelo Jacobs-Lorena, David J Lampe, Edwige Martin, Claire Valiente Moro, Michael Povelones, Sarah M Short, Blaire Steven, Jiannong Xu, Timothy D Paustian, Michelle R Rondon, Grant L Hughes, Kerri L Coon, Eva Heinz
{"title":"MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies.","authors":"Aidan Foo, Laura E Brettell, Holly L Nichols, Miguel Medina Muñoz, Jessica A Lysne, Vishaal Dhokiya, Ananya F Hoque, Doug E Brackney, Eric P Caragata, Michael L Hutchinson, Marcelo Jacobs-Lorena, David J Lampe, Edwige Martin, Claire Valiente Moro, Michael Povelones, Sarah M Short, Blaire Steven, Jiannong Xu, Timothy D Paustian, Michelle R Rondon, Grant L Hughes, Kerri L Coon, Eva Heinz","doi":"10.1371/journal.pbio.3002897","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002897","url":null,"abstract":"<p><p>Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002897"},"PeriodicalIF":9.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-15eCollection Date: 2024-11-01DOI: 10.1371/journal.pbio.3002904
Rachel A Harrison
{"title":"Social learning is triggered by environmental cues in immigrant birds.","authors":"Rachel A Harrison","doi":"10.1371/journal.pbio.3002904","DOIUrl":"10.1371/journal.pbio.3002904","url":null,"abstract":"<p><p>After dispersal, what cues trigger social learning in immigrants? A new study in wild-caught great tits in PLOS Biology suggests that changes in the physical environment, rather than the social environment, are key in prompting social learning by immigrants.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002904"},"PeriodicalIF":9.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS BiologyPub Date : 2024-11-14eCollection Date: 2024-11-01DOI: 10.1371/journal.pbio.3002699
Michael Chimento, Gustavo Alarcón-Nieto, Lucy M Aplin
{"title":"Immigrant birds learn from socially observed differences in payoffs when their environment changes.","authors":"Michael Chimento, Gustavo Alarcón-Nieto, Lucy M Aplin","doi":"10.1371/journal.pbio.3002699","DOIUrl":"10.1371/journal.pbio.3002699","url":null,"abstract":"<p><p>Longstanding theory predicts that strategic flexibility in when and how to use social information can help individuals make adaptive decisions, especially when environments are temporally or spatially variable. A short-term increase in reliance on social information under these conditions has been experimentally shown in primates, including humans, but whether this occurs in other taxa is unknown. We asked whether migration between spatially variable environments affected social information use with a large-scale cultural diffusion experiment with wild great tits (Parus major) in captivity, a small passerine bird that can socially learn novel behaviors. We simulated an immigration event where knowledgeable birds were exchanged between groups with opposing preferences for a socially learned foraging puzzle, living in similar or different environments. We found evidence that both immigrants and residents were influenced by social information and attended to the rewards that others received. Our analysis supported the use of a payoff-biased social learning by immigrants when both resources and habitat features were spatially variable. In contrast, immigrants relied more-so on individual learning when payoffs or the environment were unchanged. In summary, our results suggest that great tits assess the payoffs others receive and are more influenced by socially observed differences in payoffs when environmental cues differ in their new environment. Our results provide experimental support for the hypothesis that spatial variability is a strong driver for the evolution of social learning strategies.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002699"},"PeriodicalIF":9.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}