Pavanjit Chaggar, Jacob W Vogel, Alexa Pichet Binette, Travis B Thompson, Olof Strandberg, Niklas Mattsson-Carlgren, Linda Karlsson, Erik Stomrud, Saad Jbabdi, Stefano Magon, Gregory Klein, Oskar Hansson, Alain Goriely
{"title":"Personalised regional modelling predicts tau progression in the human brain.","authors":"Pavanjit Chaggar, Jacob W Vogel, Alexa Pichet Binette, Travis B Thompson, Olof Strandberg, Niklas Mattsson-Carlgren, Linda Karlsson, Erik Stomrud, Saad Jbabdi, Stefano Magon, Gregory Klein, Oskar Hansson, Alain Goriely","doi":"10.1371/journal.pbio.3003241","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregation of the hyperphosphorylated tau protein is a central driver of Alzheimer's disease, and its accumulation exhibits a rich spatiotemporal pattern that unfolds during the course of the disease, sequentially progressing through the brain across axonal connections. It is unclear how this spatiotemporal process is orchestrated, namely, to what extent the spread of pathologic tau is governed by transport between brain regions, local production, or both. To address this, we develop a mechanistic model from tau PET data to describe tau dynamics along the Alzheimer's disease timeline. Our analysis reveals longitudinal changes in production and transport dynamics in two independent cohorts, with subjects in the early stage of the disease exhibiting transport-dominated spread, consistent with an initial spread of pathological tau seeds, and subjects in the late stage disease characterized primarily by local tau production. Further, we demonstrate that the model can predict accurately subject-specific longitudinal tau accumulation at the regional level, potentially providing a new clinical tool to monitor and classify patient disease progression.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 7","pages":"e3003241"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003241","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Aggregation of the hyperphosphorylated tau protein is a central driver of Alzheimer's disease, and its accumulation exhibits a rich spatiotemporal pattern that unfolds during the course of the disease, sequentially progressing through the brain across axonal connections. It is unclear how this spatiotemporal process is orchestrated, namely, to what extent the spread of pathologic tau is governed by transport between brain regions, local production, or both. To address this, we develop a mechanistic model from tau PET data to describe tau dynamics along the Alzheimer's disease timeline. Our analysis reveals longitudinal changes in production and transport dynamics in two independent cohorts, with subjects in the early stage of the disease exhibiting transport-dominated spread, consistent with an initial spread of pathological tau seeds, and subjects in the late stage disease characterized primarily by local tau production. Further, we demonstrate that the model can predict accurately subject-specific longitudinal tau accumulation at the regional level, potentially providing a new clinical tool to monitor and classify patient disease progression.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.