Saskia Rödl, Yasmin Hoffman, Felix Jung, Annika Egeler, Annika Nutz, Oliver Šimončík, Martin Jung, Markus Räschle, Petr Muller, Zuzana Storchová, Timo Mühlhaus, Johannes M Herrmann
{"title":"A protein-specific priority code in presequences determines the efficiency of mitochondrial protein import.","authors":"Saskia Rödl, Yasmin Hoffman, Felix Jung, Annika Egeler, Annika Nutz, Oliver Šimončík, Martin Jung, Markus Räschle, Petr Muller, Zuzana Storchová, Timo Mühlhaus, Johannes M Herrmann","doi":"10.1371/journal.pbio.3003298","DOIUrl":null,"url":null,"abstract":"<p><p>The biogenesis of mitochondria relies on the import of hundreds of different precursor proteins from the cytosol. Most of these proteins are synthesized with N-terminal presequences which serve as mitochondrial targeting signals. Presequences consistently form amphipathic helices, but they considerably differ with respect to their primary structure and length. Here we show that presequences can be classified into seven different groups based on their specific features. Using a test set of different presequences, we observed that group A presequences endow precursor proteins with improved in vitro import characteristics. We developed IQ-Compete (for Import and de-Quenching Competition assay), a novel assay based on fluorescence de-quenching, to monitor the import efficiencies of mitochondrial precursors in vivo. With this assay, we confirmed the increased import competence of group A presequences. Using mass spectrometry, we found that the presequence of the group A protein Oxa1 specifically recruits the tetratricopeptide repeat (TPR)-containing protein TOMM34 to the cytosolic precursor protein. TOMM34, and the structurally related yeast co-chaperone Cns1, apparently serve as presequence-specific targeting factors which increases the import efficiency of a specific subset of mitochondrial precursor proteins. Our results suggest that presequences contain a protein-specific priority code that encrypts the targeting mechanism of individual mitochondrial precursor proteins.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 7","pages":"e3003298"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003298","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The biogenesis of mitochondria relies on the import of hundreds of different precursor proteins from the cytosol. Most of these proteins are synthesized with N-terminal presequences which serve as mitochondrial targeting signals. Presequences consistently form amphipathic helices, but they considerably differ with respect to their primary structure and length. Here we show that presequences can be classified into seven different groups based on their specific features. Using a test set of different presequences, we observed that group A presequences endow precursor proteins with improved in vitro import characteristics. We developed IQ-Compete (for Import and de-Quenching Competition assay), a novel assay based on fluorescence de-quenching, to monitor the import efficiencies of mitochondrial precursors in vivo. With this assay, we confirmed the increased import competence of group A presequences. Using mass spectrometry, we found that the presequence of the group A protein Oxa1 specifically recruits the tetratricopeptide repeat (TPR)-containing protein TOMM34 to the cytosolic precursor protein. TOMM34, and the structurally related yeast co-chaperone Cns1, apparently serve as presequence-specific targeting factors which increases the import efficiency of a specific subset of mitochondrial precursor proteins. Our results suggest that presequences contain a protein-specific priority code that encrypts the targeting mechanism of individual mitochondrial precursor proteins.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.