Biomechanics and Modeling in Mechanobiology最新文献

筛选
英文 中文
Modeling cardiac microcirculation for the simulation of coronary flow and 3D myocardial perfusion 模拟冠状动脉血流和三维心肌灌注的心脏微循环建模。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-12 DOI: 10.1007/s10237-024-01873-z
Giovanni Montino Pelagi, Francesco Regazzoni, Jacques M. Huyghe, Andrea Baggiano, Marco Alì, Silvia Bertoluzza, Giovanni Valbusa, Gianluca Pontone, Christian Vergara
{"title":"Modeling cardiac microcirculation for the simulation of coronary flow and 3D myocardial perfusion","authors":"Giovanni Montino Pelagi,&nbsp;Francesco Regazzoni,&nbsp;Jacques M. Huyghe,&nbsp;Andrea Baggiano,&nbsp;Marco Alì,&nbsp;Silvia Bertoluzza,&nbsp;Giovanni Valbusa,&nbsp;Gianluca Pontone,&nbsp;Christian Vergara","doi":"10.1007/s10237-024-01873-z","DOIUrl":"10.1007/s10237-024-01873-z","url":null,"abstract":"<div><p>Accurate modeling of blood dynamics in the coronary microcirculation is a crucial step toward the clinical application of in silico methods for the diagnosis of coronary artery disease. In this work, we present a new mathematical model of microcirculatory hemodynamics accounting for microvasculature compliance and cardiac contraction; we also present its application to a full simulation of hyperemic coronary blood flow and 3D myocardial perfusion in real clinical cases. Microvasculature hemodynamics is modeled with a <i>compliant</i> multi-compartment Darcy formulation, with the new compliance terms depending on the local intramyocardial pressure generated by cardiac contraction. Nonlinear analytical relationships for vessels distensibility are included based on experimental data, and all the parameters of the model are reformulated based on histologically relevant quantities, allowing a deeper model personalization. Phasic flow patterns of high arterial inflow in diastole and venous outflow in systole are obtained, with flow waveforms morphology and pressure distribution along the microcirculation reproduced in accordance with experimental and in vivo measures. Phasic diameter change for arterioles and capillaries is also obtained with relevant differences depending on the depth location. Coronary blood dynamics exhibits a disturbed flow at the systolic onset, while the obtained 3D perfusion maps reproduce the systolic impediment effect and show relevant regional and transmural heterogeneities in myocardial blood flow (MBF). The proposed model successfully reproduces microvasculature hemodynamics over the whole heartbeat and along the entire intramural vessels. Quantification of phasic flow patterns, diameter changes, regional and transmural heterogeneities in MBF represent key steps ahead in the direction of the predictive simulation of cardiac perfusion.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"1863 - 1888"},"PeriodicalIF":3.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01873-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta 用于描述人体降胸主动脉分层强度随年龄变化的牵引分离定律参数。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-10 DOI: 10.1007/s10237-024-01871-1
Zdeněk Petřivý, Lukáš Horný, Petr Tichý
{"title":"Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta","authors":"Zdeněk Petřivý,&nbsp;Lukáš Horný,&nbsp;Petr Tichý","doi":"10.1007/s10237-024-01871-1","DOIUrl":"10.1007/s10237-024-01871-1","url":null,"abstract":"<div><p>Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall’s cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, <i>T</i><sub><i>c</i></sub>, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as <i>Tc</i> =  − 13.03·10<sup>−4</sup>·Age + 0.2485 if the crack front advances in the axial direction, and <i>Tc</i> =  − 7.58·10<sup>−4</sup>·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (<i>T</i><sub><i>c</i></sub> [MPa], Age [years]). Other model parameters were the stiffness <i>K</i> and the separation at failure, δ<sub><i>f</i></sub>–δ<sub><i>c</i></sub> (<i>K</i> = 0.5 MPa/mm, δ<sub><i>f</i></sub>–δ<sub><i>c</i></sub> = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"1837 - 1849"},"PeriodicalIF":3.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01871-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational study of the influence of thyroarytenoid and cricothyroid muscle interaction on vocal fold dynamics in an MRI-based human laryngeal model 基于核磁共振成像的人喉模型中甲状腺和环甲肌相互作用对声带动力学影响的计算研究。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-09 DOI: 10.1007/s10237-024-01869-9
Weili Jiang, Biao Geng, Xudong Zheng, Qian Xue
{"title":"A computational study of the influence of thyroarytenoid and cricothyroid muscle interaction on vocal fold dynamics in an MRI-based human laryngeal model","authors":"Weili Jiang,&nbsp;Biao Geng,&nbsp;Xudong Zheng,&nbsp;Qian Xue","doi":"10.1007/s10237-024-01869-9","DOIUrl":"10.1007/s10237-024-01869-9","url":null,"abstract":"<div><p>A human laryngeal model, incorporating all the cartilages and the intrinsic muscles, was reconstructed based on MRI data. The vocal fold was represented as a multilayer structure with detailed inner components. The activation levels of the thyroarytenoid (TA) and cricothyroid (CT) muscles were systematically varied from zero to full activation allowing for the analysis of their interaction and influence on vocal fold dynamics and glottal flow. The finite element method was employed to calculate the vocal fold dynamics, while the one-dimensional Bernoulli equation was utilized to calculate the glottal flow. The analysis was focused on the muscle influence on the fundamental frequency (<i>f</i><sub><i>o</i></sub>). We found that while CT and TA  activation increased the <i>f</i><sub><i>o</i></sub> in most of the conditions, TA activation resulted in a frequency drop when it was moderately activated. We show that this frequency drop was associated with the sudden increase of the vertical motion when the vibration transited from involving the whole tissue to mainly in the cover layer. The transition of the vibration pattern was caused by the increased body-cover stiffness ratio that resulted from TA activation.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1801 - 1813"},"PeriodicalIF":3.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a physiological model of vascular wall vibrations in the arteriovenous fistula 建立动静脉瘘血管壁振动的生理模型。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-08 DOI: 10.1007/s10237-024-01865-z
Luca Soliveri, David Bruneau, Johannes Ring, Michela Bozzetto, Andrea Remuzzi, Kristian Valen-Sendstad
{"title":"Toward a physiological model of vascular wall vibrations in the arteriovenous fistula","authors":"Luca Soliveri,&nbsp;David Bruneau,&nbsp;Johannes Ring,&nbsp;Michela Bozzetto,&nbsp;Andrea Remuzzi,&nbsp;Kristian Valen-Sendstad","doi":"10.1007/s10237-024-01865-z","DOIUrl":"10.1007/s10237-024-01865-z","url":null,"abstract":"<div><p>The mechanism behind hemodialysis arteriovenous fistula (AVF) failure remains poorly understood, despite previous efforts to correlate altered hemodynamics with vascular remodeling. We have recently demonstrated that transitional flow induces high-frequency vibrations in the AVF wall, albeit with a simplified model. This study addresses the key limitations of our original fluid–structure interaction (FSI) approach, aiming to evaluate the vibration response using a more realistic model. A 3D AVF geometry was generated from contrast-free MRI and high-fidelity FSI simulations were performed. Patient-specific inflow and pressure were incorporated, and a three-term Mooney–Rivlin model was fitted using experimental data. The viscoelastic effect of perivascular tissue was modeled with Robin boundary conditions. Prescribing pulsatile inflow and pressure resulted in a substantial increase in vein displacement (<span>(+400)</span>%) and strain (<span>(+317)</span>%), with a higher maximum spectral frequency becoming visible above -42 dB (from 200 to 500 Hz). Transitioning from Saint Venant–Kirchhoff to Mooney–Rivlin model led to displacement amplitudes exceeding 10 micrometers and had a substantial impact on strain (<span>(+116)</span>%). Robin boundary conditions significantly damped high-frequency displacement (<span>(-60)</span>%). Incorporating venous tissue properties increased vibrations by 91%, extending up to 700 Hz, with a maximum strain of 0.158. Notably, our results show localized, high levels of vibration at the inner curvature of the vein, a site known for experiencing pronounced remodeling. Our findings, consistent with experimental and clinical reports of bruits and thrills, underscore the significance of incorporating physiologically plausible modeling approaches to investigate the role of wall vibrations in AVF remodeling and failure.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1741 - 1755"},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling the rheology of living cell cytoplasm: poroviscoelasticity and fluid-to-solid transition 活细胞细胞质流变学建模:多孔弹性和流固转换。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-08 DOI: 10.1007/s10237-024-01854-2
Namshad Thekkethil, Jakub Köry, Ming Guo, Peter S. Stewart, Nicholas A. Hill, Xiaoyu Luo
{"title":"Modelling the rheology of living cell cytoplasm: poroviscoelasticity and fluid-to-solid transition","authors":"Namshad Thekkethil,&nbsp;Jakub Köry,&nbsp;Ming Guo,&nbsp;Peter S. Stewart,&nbsp;Nicholas A. Hill,&nbsp;Xiaoyu Luo","doi":"10.1007/s10237-024-01854-2","DOIUrl":"10.1007/s10237-024-01854-2","url":null,"abstract":"<div><p>Eukaryotic cell rheology has important consequences for vital processes such as adhesion, migration, and differentiation. Experiments indicate that cell cytoplasm can exhibit both elastic and viscous characteristics in different regimes, while the transport of fluid (cytosol) through the cross-linked filamentous scaffold (cytoskeleton) is reminiscent of mass transfer by diffusion through a porous medium. To gain insights into this complex rheological behaviour, we construct a computational model for the cell cytoplasm as a poroviscoelastic material formulated on the principles of nonlinear continuum mechanics, where we model the cytoplasm as a porous viscoelastic scaffold with an embedded viscous fluid flowing between the pores to model the cytosol. Baseline simulations (neglecting the viscosity of the cytosol) indicate that the system exhibits seven different regimes across the parameter space spanned by the viscoelastic relaxation timescale of the cytoskeleton and the poroelastic diffusion timescale; these regimes agree qualitatively with experimental measurements. Furthermore, the theoretical model also allows us to elucidate the additional role of pore fluid viscosity, which enters the system as a distinct viscous timescale. We show that increasing this viscous timescale hinders the passage of the pore fluid (reducing the poroelastic diffusion) and makes the cytoplasm rheology increasingly incompressible, shifting the phase boundaries between the regimes.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1551 - 1569"},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the mechanosensitive collective migration of cells on the surface and the interior of morphing soft tissues 模拟细胞在变形软组织表面和内部的机械敏感性集体迁移。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-07 DOI: 10.1007/s10237-024-01870-2
Jaemin Kim, Mahmut Selman Sakar, Nikolaos Bouklas
{"title":"Modeling the mechanosensitive collective migration of cells on the surface and the interior of morphing soft tissues","authors":"Jaemin Kim,&nbsp;Mahmut Selman Sakar,&nbsp;Nikolaos Bouklas","doi":"10.1007/s10237-024-01870-2","DOIUrl":"10.1007/s10237-024-01870-2","url":null,"abstract":"<div><p>Cellular contractility, migration, and extracellular matrix (ECM) mechanics are critical for a wide range of biological processes including embryonic development, wound healing, tissue morphogenesis, and regeneration. Even though the distinct response of cells near the tissue periphery has been previously observed in cell-laden microtissues, including faster kinetics and more prominent cell-ECM interactions, there are currently no models that can fully combine coupled surface and bulk mechanics and kinetics to recapitulate the morphogenic response of these constructs. Mailand et al. (Biophys J 117(5):975–986, 2019) had shown the importance of active elastocapillarity in cell-laden microtissues, but modeling the distinct mechanosensitive migration of cells on the periphery and the interior of highly deforming tissues has not been possible thus far, especially in the presence of active elastocapillary effects. This paper presents a framework for understanding the interplay between cellular contractility, migration, and ECM mechanics in dynamically morphing soft tissues accounting for distinct cellular responses in the bulk and the surface of tissues. The major novelty of this approach is that it enables modeling the distinct migratory and contractile response of cells residing on the tissue surface and the bulk, where concurrently the morphing soft tissues undergo large deformations driven by cell contractility. Additionally, the simulation results capture the changes in shape and cell concentration for wounded and intact microtissues, enabling the interpretation of experimental data. The numerical procedure that accounts for mechanosensitive stress generation, large deformations, diffusive migration in the bulk and a distinct mechanism for diffusive migration on deforming surfaces is inspired from recent work on bulk and surface poroelasticity of hydrogels involving elastocapillary effects, but in this work, a two-field weak form is proposed and is able to alleviate numerical instabilities that were observed in the original method that utilized a three-field mixed finite element formulation.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"1815 - 1835"},"PeriodicalIF":3.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mechanics theory for the exploration of a high-throughput, sterile 3D in vitro traumatic brain injury model 用于探索高通量、无菌三维体外创伤性脑损伤模型的力学理论。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-06 DOI: 10.1007/s10237-024-01832-8
Yang Wan, Rafael D. González-Cruz, Diane Hoffman-Kim, Haneesh Kesari
{"title":"A mechanics theory for the exploration of a high-throughput, sterile 3D in vitro traumatic brain injury model","authors":"Yang Wan,&nbsp;Rafael D. González-Cruz,&nbsp;Diane Hoffman-Kim,&nbsp;Haneesh Kesari","doi":"10.1007/s10237-024-01832-8","DOIUrl":"10.1007/s10237-024-01832-8","url":null,"abstract":"<div><p>Brain injuries resulting from mechanical trauma represent an ongoing global public health issue. Several in vitro and in vivo models for traumatic brain injury (TBI) continue to be developed for delineating the various complex pathophysiological processes involved in its onset and progression. Developing an in vitro TBI model that is based on cortical spheroids is especially of great interest currently because they can replicate key aspects of in vivo brain tissue, including its electrophysiology, physicochemical microenvironment, and extracellular matrix composition. Being able to mechanically deform the spheroids are a key requirement in any effective in vitro TBI model. The spheroids’ shape and size, however, make mechanically loading them, especially in a high-throughput, sterile, and reproducible manner, quite challenging. To address this challenge, we present an idea for a spheroid-based, in vitro TBI model in which the spheroids are mechanically loaded by being spun by a centrifuge. (An experimental demonstration of this new idea will be published shortly elsewhere.) An issue that can limit its utility and scope is that imaging techniques used in 2D and 3D in vitro TBI models cannot be readily applied in it to determine spheroid strains. In order to address this issue, we developed a continuum mechanics-based theory to estimate the spheroids’ strains when they are being spun at a constant angular velocity. The mechanics theory, while applicable here to a special case of the centrifuge-based TBI model, is also of general value since it can help with the further exploration and development of TBI models.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 4","pages":"1179 - 1196"},"PeriodicalIF":3.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized evaluation of the passive myocardium in ischemic cardiomyopathy via computational modeling using Bayesian optimization 通过贝叶斯优化计算建模对缺血性心肌病的被动心肌进行个性化评估。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-07-02 DOI: 10.1007/s10237-024-01856-0
Saeed Torbati, Alireza Daneshmehr, Hamidreza Pouraliakbar, Masoud Asgharian, Seyed Hossein Ahmadi Tafti, Dominique Shum-Tim, Alireza Heidari
{"title":"Personalized evaluation of the passive myocardium in ischemic cardiomyopathy via computational modeling using Bayesian optimization","authors":"Saeed Torbati,&nbsp;Alireza Daneshmehr,&nbsp;Hamidreza Pouraliakbar,&nbsp;Masoud Asgharian,&nbsp;Seyed Hossein Ahmadi Tafti,&nbsp;Dominique Shum-Tim,&nbsp;Alireza Heidari","doi":"10.1007/s10237-024-01856-0","DOIUrl":"10.1007/s10237-024-01856-0","url":null,"abstract":"<div><p>Biomechanics-based patient-specific modeling is a promising approach that has proved invaluable for its clinical potential to assess the adversities caused by ischemic heart disease (IHD). In the present study, we propose a framework to find the passive material properties of the myocardium and the unloaded shape of cardiac ventricles simultaneously in patients diagnosed with ischemic cardiomyopathy (ICM). This was achieved by minimizing the difference between the simulated and the target end-diastolic pressure–volume relationships (EDPVRs) using black-box Bayesian optimization, based on the finite element analysis (FEA). End-diastolic (ED) biventricular geometry and the location of the ischemia were determined from cardiac magnetic resonance (CMR) imaging. We employed our pipeline to model the cardiac ventricles of three patients aged between 57 and 66 years, with and without the inclusion of valves. An excellent agreement between the simulated and the target EDPVRs has been reached. Our results revealed that the incorporation of valvular springs typically leads to lower hyperelastic parameters for both healthy and ischemic myocardium, as well as a higher fiber Green strain in the viable regions compared to models without valvular stiffness. Furthermore, the addition of valve-related effects did not result in significant changes in myofiber stress after optimization. We concluded that more accurate results could be obtained when cardiac valves were considered in modeling ventricles. The present novel and practical methodology paves the way for developing digital twins of ischemic cardiac ventricles, providing a non-invasive assessment for designing optimal personalized therapies in precision medicine.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1591 - 1606"},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating pulmonary arterial remodeling via an animal-specific computational model of pulmonary artery stenosis 通过肺动脉狭窄的动物特异性计算模型估算肺动脉重塑。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-06-25 DOI: 10.1007/s10237-024-01850-6
Callyn J. Kozitza, Mitchel J. Colebank, Juan Pablo Gonzalez-Pereira, Naomi C. Chesler, Luke Lamers, Alejandro Roldán-Alzate, Colleen M. Witzenburg
{"title":"Estimating pulmonary arterial remodeling via an animal-specific computational model of pulmonary artery stenosis","authors":"Callyn J. Kozitza,&nbsp;Mitchel J. Colebank,&nbsp;Juan Pablo Gonzalez-Pereira,&nbsp;Naomi C. Chesler,&nbsp;Luke Lamers,&nbsp;Alejandro Roldán-Alzate,&nbsp;Colleen M. Witzenburg","doi":"10.1007/s10237-024-01850-6","DOIUrl":"10.1007/s10237-024-01850-6","url":null,"abstract":"<div><p>Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1469 - 1490"},"PeriodicalIF":3.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of cardiopulmonary bypass parameters on embolus transport in a patient-specific aorta 心肺旁路参数对患者特异性主动脉栓子运输的影响研究。
IF 3 3区 医学
Biomechanics and Modeling in Mechanobiology Pub Date : 2024-06-17 DOI: 10.1007/s10237-024-01867-x
Nafis M. Arefin, Bryan C. Good
{"title":"Investigation of cardiopulmonary bypass parameters on embolus transport in a patient-specific aorta","authors":"Nafis M. Arefin,&nbsp;Bryan C. Good","doi":"10.1007/s10237-024-01867-x","DOIUrl":"10.1007/s10237-024-01867-x","url":null,"abstract":"<div><p>Neurological complexities resulting from surgery requiring cardiopulmonary bypass (CPB) remain a major concern, encompassing a spectrum of complications including thromboembolic stroke and various cognitive impairments. Surgical manipulation during CPB is considered the primary cause of these neurological complications. This study addresses the overall lack of knowledge concerning CPB hemodynamics within the aorta, employing a combined experimental-computational modeling approach, featuring computational fluid dynamics simulations validated with an in vitro CPB flow loop under steady conditions. Parametric studies were systematically performed, varying parameters associated with CPB techniques (pump flow rate and hemodiluted blood viscosity) and properties related to formed emboli (size and density). This represents the first comprehensive investigation into the individual and combined effects of these factors. Our findings reveal critical insights into the operating conditions of CPB, indicating a positive correlation between pump flow rate and emboli transport into the aortic branches, potentially increasing the risk of stroke. It was also found that larger emboli were more often transported into the aortic branches at higher pump flow rates, while smaller emboli preferred lower flow rates. Further, as blood is commonly diluted during CPB to decrease its viscosity, more emboli were found to enter the aortic branches with greater hemodilution. The combined effects of these parameters are captured using the non-dimensional Stokes number, which was found to positively correlate with emboli transport into the aortic branches. These findings contribute to our understanding of embolic stroke risk factors during CPB and shed light on the complex interplay between CPB parameters.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1765 - 1780"},"PeriodicalIF":3.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信