{"title":"Learned Image Compression With Efficient Cross-Platform Entropy Coding","authors":"Runyu Yang;Dong Liu;Feng Wu;Wen Gao","doi":"10.1109/JETCAS.2025.3538652","DOIUrl":"https://doi.org/10.1109/JETCAS.2025.3538652","url":null,"abstract":"Learned image compression has shown remarkable compression efficiency gain over the traditional image compression solutions, which is partially attributed to the learned entropy models and the adopted entropy coding engine. However, the inference of the entropy models and the sequential nature of the entropy coding both incur high time complexity. Meanwhile, the neural network-based entropy models usually involve floating-point computations, which incur inconsistent probability estimation and decoding failure in different platforms. We address these limitations by introducing an efficient and cross-platform entropy coding method, chain coding-based latent compression (CC-LC), into learned image compression. First, we leverage the classic chain coding and carefully design a block-based entropy coding procedure, significantly reducing the number of coding symbols and thus the coding time. Second, since CC-LC is not based on neural networks, we propose a rate estimation network as a surrogate of CC-LC during the end-to-end training. Third, we alternately train the analysis/synthesis networks and the rate estimation network for the rate-distortion optimization, making the learned latent fit CC-LC. Experimental results show that our method achieves much lower time complexity than the other learned image compression methods, ensures cross-platform consistency, and has comparable compression efficiency with BPG. Our code and models are publicly available at <uri>https://github.com/Yang-Runyu/CC-LC</uri>.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"72-82"},"PeriodicalIF":3.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BiDSRS+: Resource Efficient Reconfigurable Real Time Bidirectional Super Resolution System for FPGAs","authors":"Rashed Al Amin;Roman Obermaisser","doi":"10.1109/JETCAS.2025.3538016","DOIUrl":"https://doi.org/10.1109/JETCAS.2025.3538016","url":null,"abstract":"Super-resolution (SR) systems represent a rapidly advancing area within Information and Communication Technology (ICT) due to their significant applications in computer vision and visual communication. Integrating SR systems with Deep Neural Networks (DNNs) is a widely adopted method for leveraging faster and improved image reconstruction. However, the real-time computational demands, extensive energy overhead and the huge memory footprints associated with DNN-based SR systems limit their throughput and scalability. Field-programmable gate arrays (FPGAs) present a viable and promising solution for exploring the structure and architecture of SR systems due to their reconfigurable nature and parallel computing capabilities. The existing FPGA-based solutions can effectively reduce the computational latency in SR systems, they often result in higher resource and energy consumption. Besides, the traditional SR techniques generally focus on either upscaling or downscaling images or videos without offering any scaling reconfigurability. To address these limitations, this paper introduces <italic>BiDSRS+</i>, a novel FPGA based resource-efficient and reconfigurable real-time SR system using modified bicubic interpolation method. In addition, <italic>BiDSRS+</i> supports both upscaling and downscaling of images and videos, enhancing its versatility. Evaluations conducted on the Xilinx ZCU 102 FPGA board reveal substantial resource savings, with reductions of 44x LUT, 31x BRAM, and 35x DSP utilization compared to state-of-the-art DNN-based SR systems, albeit with a trade-off in throughput of 0.5x. Furthermore, when compared to leading algorithm-based SR systems, <italic>BiDSRS+</i> achieves reductions of 5.8x LUT, 1.75x BRAM, and 2.3x Power consumption, without compromising the throughput. Due to its high resource efficiency and reconfigurability with a throughput of 4K@60 FPS, <italic>BiDSRS+</i> offers significant advantages in promoting sustainable and energy-efficient green video communication.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"120-132"},"PeriodicalIF":3.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143601976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ApprOchs: A Memristor-Based In-Memory Adaptive Approximate Adder","authors":"Dominik Ochs;Lukas Rapp;Leandro Borzyk;Nima Amirafshar;Nima TaheriNejad","doi":"10.1109/JETCAS.2025.3537328","DOIUrl":"https://doi.org/10.1109/JETCAS.2025.3537328","url":null,"abstract":"As silicon scaling nears its limits and the <italic>Big Data</i> era unfolds, in-memory computing is increasingly important for overcoming the <italic>Von Neumann</i> bottleneck and thus enhancing modern computing performance. One of the rising in-memory technologies are <italic>Memristors</i>, which are resistors capable of memorizing state based on an applied voltage, making them useful for storage and computation. Another emerging computing paradigm is <italic>Approximate Computing</i>, which allows for errors in calculations to in turn reduce die area, processing time and energy consumption. In an attempt to combine both concepts and leverage their benefits, we propose the memristor-based adaptive approximate adder <italic>ApprOchs</i> - which is able to selectively compute segments of an addition either approximately or exactly. ApprOchs is designed to adapt to the input data given and thus only compute as much as is needed, a quality current State-of-the-Art (SoA) in-memory adders lack. Despite also using OR-based approximation in the lower k bit, ApprOchs has the edge over S-SINC because ApprOchs can skip the computation of the upper n-k bit for a small number of possible input combinations (22k of 22n possible combinations skip the upper bits). Compared to SoA in-memory approximate adders, ApprOchs outperforms them in terms of energy consumption while being highly competitive in terms of error behavior, with moderate speed and area efficiency. In application use cases, ApprOchs demonstrates its energy efficiency, particularly in machine learning applications. In MNIST classification using Deep Convolutional Neural Networks, we achieve 78.4% energy savings compared to SoA approximate adders with the same accuracy as exact adders at 98.9%, while for k-means clustering, we observed a 69% reduction in energy consumption with no quality drop in clustering results compared to the exact computation. For image blurring, we achieve up to 32.7% energy reduction over the exact computation and in its most promising configuration (<inline-formula> <tex-math>$k=3$ </tex-math></inline-formula>), the ApprOchs adder consumes 13.4% less energy than the most energy-efficient competing SoA design (S-SINC+), while achieving a similarly excellent median image quality at 43.74dB PSNR and 0.995 SSIM.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"105-119"},"PeriodicalIF":3.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143601977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandre Mercat;Joose Sainio;Steven Le Moan;Christian Herglotz
{"title":"Do We Need 10 bits? Assessing HEVC Encoders for Energy-Efficient HDR Video Streaming","authors":"Alexandre Mercat;Joose Sainio;Steven Le Moan;Christian Herglotz","doi":"10.1109/JETCAS.2025.3533041","DOIUrl":"https://doi.org/10.1109/JETCAS.2025.3533041","url":null,"abstract":"High-dynamic range (HDR) video content has gained popularity due to its enhanced color depth and luminance range, but it also presents new challenges in terms of compression efficiency and energy consumption. In this paper, we present an in-depth study of the compression performance and energy efficiency of HDR video encoding using High-Efficiency Video Coding (HEVC). In addition to using a native 10-bit HDR encoding configuration as a reference, we explore whether applying tone mapping to an 8-bit representation before encoding can result in additional bitrate and energy savings without compromising visual quality. The main contributions of this work are as follows: 1) a detailed evaluation of four HDR video encoding configurations, three of which leverage tone mapping techniques, 2) a comprehensive experimental setup involving over 15,000 individual encodings across three open-source HEVC encoders (Kvazaar, x265, and SVT-HEVC) and multiple presets, 3) the use of two advanced perception-based metrics for BD-rate calculations, one of which is specifically tailored to capture colour distortions and 4) an open-source dataset consisting of all experimental results for further research. Among the three tone-mapping configurations tested, our findings show that a simple bit-shifting approach can achieves significant reductions in both bitrate and energy consumption compared to the native 10-bit HDR encoding configuration. This research aims to lay an initial foundation for understanding the balance between coding efficiency and energy consumption in HDR video encoding, offering valuable insights to guide future advancements in the field.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"31-43"},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy-Efficient Saliency-Guided Video Coding Framework for Real-Time Applications","authors":"Tero Partanen;Minh Hoang;Alexandre Mercat;Joose Sainio;Jarno Vanne","doi":"10.1109/JETCAS.2024.3525339","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3525339","url":null,"abstract":"The significant growth in global video data traffic can be mitigated by saliency-based video coding schemes that seek to increase coding efficiency without any loss of objective visual quality by compressing salient video regions less heavily than non-salient regions. However, conducting salient object detection (SOD) on every video frame before encoding tends to lead to substantial complexity and energy consumption overhead, especially if state-of-the-art deep learning techniques are used in saliency detection. This work introduces a saliency-guided video encoding framework that reduces the energy consumption over frame-by-frame SOD by increasing the detection interval and applying the proposed region-of-interest (ROI) tracking between successive detections. The computational complexity of our ROI tracking technique is kept low by predicting object movements from motion vectors, which are inherently calculated during encoding. Our experimental results demonstrate that the proposed ROI tracking solution saves energy by 86-95% and attains 84-94% accuracy over frame-by-frame SOD. Correspondingly, integrating our proposal into the complete saliency-guided video coding scheme reduces energy consumption on CPU by 79-82% at a cost of weighted PSNR of less than 5%. These findings indicate that our solution has significant potential for low-cost and low-power streaming media applications.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"44-57"},"PeriodicalIF":3.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143601935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peilin Chen;Xiaohan Fang;Meng Wang;Shiqi Wang;Siwei Ma
{"title":"Compact Visual Data Representation for Green Multimedia–A Human Visual System Perspective","authors":"Peilin Chen;Xiaohan Fang;Meng Wang;Shiqi Wang;Siwei Ma","doi":"10.1109/JETCAS.2024.3524260","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3524260","url":null,"abstract":"The Human Visual System (HVS), with its intricate sophistication, is capable of achieving ultra-compact information compression for visual signals. This remarkable ability is coupled with high generalization capability and energy efficiency. By contrast, the state-of-the-art Versatile Video Coding (VVC) standard achieves a compression ratio of around 1,000 times for raw visual data. This notable disparity motivates the research community to draw inspiration to effectively handle the immense volume of visual data in a green way. Therefore, this paper provides a survey of how visual data can be efficiently represented for green multimedia, in particular when the ultimate task is knowledge extraction instead of visual signal reconstruction. We introduce recent research efforts that promote green, sustainable, and efficient multimedia in this field. Moreover, we discuss how the deep understanding of the HVS can benefit the research community, and envision the development of future green multimedia technologies.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"16-30"},"PeriodicalIF":3.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daiane Freitas;Patrick Rosa;Leonardo Müller;Daniel Palomino;Cláudio M. Diniz;Mateus Grellert;Guilherme Corrêa
{"title":"Low-Power Multiversion Interpolation Filter Accelerator With Hardware Reuse for AV1 Codec","authors":"Daiane Freitas;Patrick Rosa;Leonardo Müller;Daniel Palomino;Cláudio M. Diniz;Mateus Grellert;Guilherme Corrêa","doi":"10.1109/JETCAS.2024.3523246","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3523246","url":null,"abstract":"In modern video encoders, sub-pixel motion models are used to represent smoother transitions between neighboring frames, which is specially useful in regions with intense movement. The AV1 video codec introduces adaptive filtering for sub-pixel interpolation in the inter-frame prediction stage, enhancing flexibility in Motion Estimation (ME) and Motion Compensation (MC), using three filter types: Regular, Sharp, and Smooth. However, the increased variety of filters leads to higher complexity and energy consumption, particularly during the resource-intensive generation of sub-pixel samples. To address this challenge, this paper presents a hardware accelerator optimized for AV1 interpolation, incorporating energy-saving features for unused filters. The accelerator includes one precise version that can be used for both MC and ME and two approximate versions for ME, designed to maximize hardware efficiency and minimize implementation costs. The proposed design can process videos at resolutions up to 4320p at 50 frames per second for MC and 2,656.14 million samples per second for ME, with a power dissipation ranging between 21.25 mW and 40.06 mW, and an average coding efficiency loss of 0.67% and 1.11%, depending on the filter type and version.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"133-142"},"PeriodicalIF":3.7,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems Information for Authors","authors":"","doi":"10.1109/JETCAS.2024.3502893","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3502893","url":null,"abstract":"","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"835-835"},"PeriodicalIF":3.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10799918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to “A Reconfigurable Spatial Architecture for Energy-Efficient Inception Neural Networks”","authors":"Lichuan Luo;Wang Kang;Junzhan Liu;He Zhang;Youguang Zhang;Dijun Liu;Peng Ouyang","doi":"10.1109/JETCAS.2024.3464190","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3464190","url":null,"abstract":"Presents corrections to the paper, (Erratum to “A Reconfigurable Spatial Architecture for Energy-Efficient Inception Neural Networks”).","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"834-834"},"PeriodicalIF":3.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10799921","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems Publication Information","authors":"","doi":"10.1109/JETCAS.2024.3502897","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3502897","url":null,"abstract":"","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"C2-C2"},"PeriodicalIF":3.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10799919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}