ApprOchs: A Memristor-Based In-Memory Adaptive Approximate Adder

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Dominik Ochs;Lukas Rapp;Leandro Borzyk;Nima Amirafshar;Nima TaheriNejad
{"title":"ApprOchs: A Memristor-Based In-Memory Adaptive Approximate Adder","authors":"Dominik Ochs;Lukas Rapp;Leandro Borzyk;Nima Amirafshar;Nima TaheriNejad","doi":"10.1109/JETCAS.2025.3537328","DOIUrl":null,"url":null,"abstract":"As silicon scaling nears its limits and the <italic>Big Data</i> era unfolds, in-memory computing is increasingly important for overcoming the <italic>Von Neumann</i> bottleneck and thus enhancing modern computing performance. One of the rising in-memory technologies are <italic>Memristors</i>, which are resistors capable of memorizing state based on an applied voltage, making them useful for storage and computation. Another emerging computing paradigm is <italic>Approximate Computing</i>, which allows for errors in calculations to in turn reduce die area, processing time and energy consumption. In an attempt to combine both concepts and leverage their benefits, we propose the memristor-based adaptive approximate adder <italic>ApprOchs</i> - which is able to selectively compute segments of an addition either approximately or exactly. ApprOchs is designed to adapt to the input data given and thus only compute as much as is needed, a quality current State-of-the-Art (SoA) in-memory adders lack. Despite also using OR-based approximation in the lower k bit, ApprOchs has the edge over S-SINC because ApprOchs can skip the computation of the upper n-k bit for a small number of possible input combinations (22k of 22n possible combinations skip the upper bits). Compared to SoA in-memory approximate adders, ApprOchs outperforms them in terms of energy consumption while being highly competitive in terms of error behavior, with moderate speed and area efficiency. In application use cases, ApprOchs demonstrates its energy efficiency, particularly in machine learning applications. In MNIST classification using Deep Convolutional Neural Networks, we achieve 78.4% energy savings compared to SoA approximate adders with the same accuracy as exact adders at 98.9%, while for k-means clustering, we observed a 69% reduction in energy consumption with no quality drop in clustering results compared to the exact computation. For image blurring, we achieve up to 32.7% energy reduction over the exact computation and in its most promising configuration (<inline-formula> <tex-math>$k=3$ </tex-math></inline-formula>), the ApprOchs adder consumes 13.4% less energy than the most energy-efficient competing SoA design (S-SINC+), while achieving a similarly excellent median image quality at 43.74dB PSNR and 0.995 SSIM.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 1","pages":"105-119"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10859167/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As silicon scaling nears its limits and the Big Data era unfolds, in-memory computing is increasingly important for overcoming the Von Neumann bottleneck and thus enhancing modern computing performance. One of the rising in-memory technologies are Memristors, which are resistors capable of memorizing state based on an applied voltage, making them useful for storage and computation. Another emerging computing paradigm is Approximate Computing, which allows for errors in calculations to in turn reduce die area, processing time and energy consumption. In an attempt to combine both concepts and leverage their benefits, we propose the memristor-based adaptive approximate adder ApprOchs - which is able to selectively compute segments of an addition either approximately or exactly. ApprOchs is designed to adapt to the input data given and thus only compute as much as is needed, a quality current State-of-the-Art (SoA) in-memory adders lack. Despite also using OR-based approximation in the lower k bit, ApprOchs has the edge over S-SINC because ApprOchs can skip the computation of the upper n-k bit for a small number of possible input combinations (22k of 22n possible combinations skip the upper bits). Compared to SoA in-memory approximate adders, ApprOchs outperforms them in terms of energy consumption while being highly competitive in terms of error behavior, with moderate speed and area efficiency. In application use cases, ApprOchs demonstrates its energy efficiency, particularly in machine learning applications. In MNIST classification using Deep Convolutional Neural Networks, we achieve 78.4% energy savings compared to SoA approximate adders with the same accuracy as exact adders at 98.9%, while for k-means clustering, we observed a 69% reduction in energy consumption with no quality drop in clustering results compared to the exact computation. For image blurring, we achieve up to 32.7% energy reduction over the exact computation and in its most promising configuration ( $k=3$ ), the ApprOchs adder consumes 13.4% less energy than the most energy-efficient competing SoA design (S-SINC+), while achieving a similarly excellent median image quality at 43.74dB PSNR and 0.995 SSIM.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信