Annual Review of Virology最新文献

筛选
英文 中文
Viral Membrane Fusion: A Dance Between Proteins and Lipids. 病毒膜融合:蛋白质和脂质之间的舞蹈。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 DOI: 10.1146/annurev-virology-111821-093413
Judith M White, Amanda E Ward, Laura Odongo, Lukas K Tamm
{"title":"Viral Membrane Fusion: A Dance Between Proteins and Lipids.","authors":"Judith M White, Amanda E Ward, Laura Odongo, Lukas K Tamm","doi":"10.1146/annurev-virology-111821-093413","DOIUrl":"10.1146/annurev-virology-111821-093413","url":null,"abstract":"<p><p>There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"10 1","pages":"139-161"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41153695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microviruses: A World Beyond phiX174. 微病毒:超越phiX174的世界。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 DOI: 10.1146/annurev-virology-100120-011239
Paul C Kirchberger, Howard Ochman
{"title":"Microviruses: A World Beyond <i>phi</i>X174.","authors":"Paul C Kirchberger, Howard Ochman","doi":"10.1146/annurev-virology-100120-011239","DOIUrl":"10.1146/annurev-virology-100120-011239","url":null,"abstract":"<p><p>Two decades of metagenomic analyses have revealed that in many environments, small (∼5 kb), single-stranded DNA phages of the family <i>Microviridae</i> dominate the virome. Although the emblematic microvirus <i>phi</i>X174 is ubiquitous in the laboratory, most other microviruses, particularly those of the gokushovirus and amoyvirus lineages, have proven to be much more elusive. This puzzling lack of representative isolates has hindered insights into microviral biology. Furthermore, the idiosyncratic size and nature of their genomes have resulted in considerable misjudgments of their actual abundance in nature. Fortunately, recent successes in microvirus isolation and improved metagenomic methodologies can now provide us with more accurate appraisals of their abundance, their hosts, and their interactions. The emerging picture is that <i>phi</i>X174 and its relatives are rather rare and atypical microviruses, and that a tremendous diversity of other microviruses is ready for exploration.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"10 1","pages":"99-118"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41155324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anticipating the Next Ten Years of the Annual Review of Virology. 展望病毒学年度评论的未来十年。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 DOI: 10.1146/annurev-vi-10-062723-101111
Julie K Pfeiffer, Lynn W Enquist, Daniel DiMaio, Terence S Dermody
{"title":"Anticipating the Next Ten Years of the <i>Annual Review of Virology</i>.","authors":"Julie K Pfeiffer,&nbsp;Lynn W Enquist,&nbsp;Daniel DiMaio,&nbsp;Terence S Dermody","doi":"10.1146/annurev-vi-10-062723-101111","DOIUrl":"https://doi.org/10.1146/annurev-vi-10-062723-101111","url":null,"abstract":"","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"10 1","pages":"iv-vii"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41173096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and Functional Insights into Viral Programmed Ribosomal Frameshifting. 病毒程序性核糖体移框的结构和功能见解。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 Epub Date: 2023-06-20 DOI: 10.1146/annurev-virology-111821-120646
Chris H Hill, Ian Brierley
{"title":"Structural and Functional Insights into Viral Programmed Ribosomal Frameshifting.","authors":"Chris H Hill, Ian Brierley","doi":"10.1146/annurev-virology-111821-120646","DOIUrl":"10.1146/annurev-virology-111821-120646","url":null,"abstract":"<p><p>Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"217-242"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10042895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. 人类的分段负义RNA病毒:报告菌株的遗传系统和实验用途。
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 DOI: 10.1146/annurev-virology-111821-120445
Cait E Hamele, M Ariel Spurrier, Rebecca A Leonard, Nicholas S Heaton
{"title":"Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains.","authors":"Cait E Hamele, M Ariel Spurrier, Rebecca A Leonard, Nicholas S Heaton","doi":"10.1146/annurev-virology-111821-120445","DOIUrl":"10.1146/annurev-virology-111821-120445","url":null,"abstract":"<p><p>Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"10 1","pages":"261-282"},"PeriodicalIF":8.1,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Knowns and Unknowns of Herpesvirus Nuclear Egress. 疱疹病毒核出口的已知与未知。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 Epub Date: 2023-04-11 DOI: 10.1146/annurev-virology-111821-105518
Barbara G Klupp, Thomas C Mettenleiter
{"title":"The Knowns and Unknowns of Herpesvirus Nuclear Egress.","authors":"Barbara G Klupp,&nbsp;Thomas C Mettenleiter","doi":"10.1146/annurev-virology-111821-105518","DOIUrl":"10.1146/annurev-virology-111821-105518","url":null,"abstract":"<p><p>Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"305-323"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structures and Mechanisms of Nonsegmented, Negative-Strand RNA Virus Polymerases. 非分段负链RNA病毒聚合酶的结构和机制。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 Epub Date: 2023-05-03 DOI: 10.1146/annurev-virology-111821-102603
Mohamed Ouizougun-Oubari, Rachel Fearns
{"title":"Structures and Mechanisms of Nonsegmented, Negative-Strand RNA Virus Polymerases.","authors":"Mohamed Ouizougun-Oubari,&nbsp;Rachel Fearns","doi":"10.1146/annurev-virology-111821-102603","DOIUrl":"10.1146/annurev-virology-111821-102603","url":null,"abstract":"<p><p>The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order <i>Mononegavirales</i>, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"199-215"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9404562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structure and Role of O-Linked Glycans in Viral Envelope Proteins. O-连接的甘氨酸在病毒包膜蛋白中的结构和作用。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 Epub Date: 2023-07-06 DOI: 10.1146/annurev-virology-111821-121007
Sigvard Olofsson, Marta Bally, Edward Trybala, Tomas Bergström
{"title":"Structure and Role of O-Linked Glycans in Viral Envelope Proteins.","authors":"Sigvard Olofsson,&nbsp;Marta Bally,&nbsp;Edward Trybala,&nbsp;Tomas Bergström","doi":"10.1146/annurev-virology-111821-121007","DOIUrl":"10.1146/annurev-virology-111821-121007","url":null,"abstract":"<p><p>N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"283-304"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9595776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. CBASS至cGAS STING:核苷酸第二信使免疫信号的起源和机制。
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 Epub Date: 2023-06-28 DOI: 10.1146/annurev-virology-111821-115636
Kailey M Slavik, Philip J Kranzusch
{"title":"CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling.","authors":"Kailey M Slavik,&nbsp;Philip J Kranzusch","doi":"10.1146/annurev-virology-111821-115636","DOIUrl":"10.1146/annurev-virology-111821-115636","url":null,"abstract":"<p><p>Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in <i>Vibrio</i> (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"423-453"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9695475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
What Have We Learned by Resurrecting the 1918 Influenza Virus? 我们从1918年流感病毒的复活中学到了什么?
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2023-09-29 DOI: 10.1146/annurev-virology-111821-104408
Brad Gilbertson, Kanta Subbarao
{"title":"What Have We Learned by Resurrecting the 1918 Influenza Virus?","authors":"Brad Gilbertson,&nbsp;Kanta Subbarao","doi":"10.1146/annurev-virology-111821-104408","DOIUrl":"https://doi.org/10.1146/annurev-virology-111821-104408","url":null,"abstract":"<p><p>The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"10 1","pages":"25-47"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信