Open Mathematics最新文献

筛选
英文 中文
Finite groups with gcd(χ(1), χc (1)) a prime gcd(χ(1), χc (1))为质数的有限群
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-22 DOI: 10.1515/math-2024-0037
Li Gao, Zhongbi Wang, Guiyun Chen
{"title":"Finite groups with gcd(χ(1), χc (1)) a prime","authors":"Li Gao, Zhongbi Wang, Guiyun Chen","doi":"10.1515/math-2024-0037","DOIUrl":"https://doi.org/10.1515/math-2024-0037","url":null,"abstract":"The aim of this article is to study how the greatest common divisor of the degree and codegree of an irreducible character of a finite group influences its structure. We study a finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{rm{gcd }}left(chi left(1),{chi }^{c}left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> a prime for almost all irreducible characters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> </m:math> <jats:tex-math>chi </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and obtain the following two conclusions: <jats:list list-type=\"custom\"> <jats:list-item> <jats:label>(1)</jats:label> There does not exist any finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small values and functional laws of the iterated logarithm for operator fractional Brownian motion 算子分数布朗运动的迭代对数的小值和函数规律
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-22 DOI: 10.1515/math-2024-0045
Wensheng Wang, Jingshuang Dong
{"title":"Small values and functional laws of the iterated logarithm for operator fractional Brownian motion","authors":"Wensheng Wang, Jingshuang Dong","doi":"10.1515/math-2024-0045","DOIUrl":"https://doi.org/10.1515/math-2024-0045","url":null,"abstract":"The multivariate Gaussian random fields with matrix-based scaling laws are widely used for inference in statistics and many applied areas. In such contexts, interests are often Hölder regularities of spatial surfaces in any given direction. This article analyzes the almost sure sample function behavior for operator fractional Brownian motion, including multivariate fractional Brownian motion. We obtain the estimations of small ball probability and the strongly locally nondeterministic for operator fractional Brownian motion in any given direction. By applying these estimates, we obtain Chung type laws of the iterated logarithm for operator fractional Brownian motion. Our results show that the precise Hölder regularities of these spatial surfaces are completely determined by the real parts of the eigenvalues of self-similarity exponent and the covariance matrix at time point 1.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The limit theorems on extreme order statistics and partial sums of i.i.d. random variables 极序统计和 i.i.d. 随机变量部分和的极限定理
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-17 DOI: 10.1515/math-2024-0047
Gaoyu Li, Chengxiu Ling, Zhongquan Tan
{"title":"The limit theorems on extreme order statistics and partial sums of i.i.d. random variables","authors":"Gaoyu Li, Chengxiu Ling, Zhongquan Tan","doi":"10.1515/math-2024-0047","DOIUrl":"https://doi.org/10.1515/math-2024-0047","url":null,"abstract":"This article proves several weak limit theorems for the joint version of extreme order statistics and partial sums of independently and identically distributed random variables. The results are also extended to almost sure limit version.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence rate of the truncated Euler-Maruyama method for highly nonlinear neutral stochastic differential equations with time-dependent delay 有时间延迟的高度非线性中性随机微分方程的截断欧拉-丸山方法收敛率
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-14 DOI: 10.1515/math-2024-0038
Aleksandra M. Petrović
{"title":"Convergence rate of the truncated Euler-Maruyama method for highly nonlinear neutral stochastic differential equations with time-dependent delay","authors":"Aleksandra M. Petrović","doi":"10.1515/math-2024-0038","DOIUrl":"https://doi.org/10.1515/math-2024-0038","url":null,"abstract":"This article can be considered as a continuation of Petrović and Milošević [<jats:italic>The truncated Euler-Maruyama method for highly nonlinear neutral stochastic differential equations with time-dependent delay</jats:italic>, Filomat 35 (2021), no. 7, 2457–2484], where the authors established the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0038_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{L}^{q}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-convergence of the truncated Euler-Maruyama (EM) method for neutral stochastic differential equations with time-dependent delay under the Khasminskii-type condition. However, the convergence rate of the method has not been studied there, which is the main goal of this article. Also, there are some restrictions on the truncated coefficients of the considered equations, and these restrictions sometimes might force the step size to be so small that the application of the truncated EM method would be limited. Therefore, the convergence rate without these restrictions will be considered in this article. Moreover, one of the sufficient conditions for obtaining the main result of this article, which is related to Lipschitz constants for the neutral term and delay function, is weakened. In that way, some of the results of the cited article are generalized. The main result of this article is proved by employing two conditions related to the increments to the coefficients and the neutral term of the equations under consideration, among other conditions. The main theoretical result is illustrated by an example.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the energy decay of a coupled nonlinear suspension bridge problem with nonlinear feedback 论具有非线性反馈的耦合非线性悬索桥问题的能量衰减
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-14 DOI: 10.1515/math-2024-0042
Mohammad M. Al-Gharabli
{"title":"On the energy decay of a coupled nonlinear suspension bridge problem with nonlinear feedback","authors":"Mohammad M. Al-Gharabli","doi":"10.1515/math-2024-0042","DOIUrl":"https://doi.org/10.1515/math-2024-0042","url":null,"abstract":"In this article, we study a mathematical model for a one-dimensional suspension bridge problem with nonlinear damping. The model takes into consideration the vibration of the bridge deck in the vertical plane and main cable from which the bridge deck is suspended by the suspenders. We use the multiplier method to establish explicit and generalized decay results, without imposing restrictive growth assumption near the origin on the damping terms. Our results substantially improve, extend, and generalize some earlier related results in the literature.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variational approach to Kirchhoff-type second-order impulsive differential systems 基尔霍夫型二阶脉冲微分系统的变量方法
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-13 DOI: 10.1515/math-2024-0025
Wangjin Yao, Huiping Zhang
{"title":"Variational approach to Kirchhoff-type second-order impulsive differential systems","authors":"Wangjin Yao, Huiping Zhang","doi":"10.1515/math-2024-0025","DOIUrl":"https://doi.org/10.1515/math-2024-0025","url":null,"abstract":"In this study, we consider a Kirchhoff-type second-order impulsive differential system with the Dirichlet boundary condition and obtain the existence and multiplicity of solutions to the impulsive problem via variational methods.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singularities of spherical surface in R4 R4 中球面的奇异点
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-10 DOI: 10.1515/math-2024-0033
Haiming Liu, Yuefeng Hua, Wanzhen Li
{"title":"Singularities of spherical surface in R4","authors":"Haiming Liu, Yuefeng Hua, Wanzhen Li","doi":"10.1515/math-2024-0033","DOIUrl":"https://doi.org/10.1515/math-2024-0033","url":null,"abstract":"In this article, we mainly study the geometric properties of spherical surface of a curve on a hypersurface <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0033_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Σ</m:mi> </m:math> <jats:tex-math>Sigma </jats:tex-math> </jats:alternatives> </jats:inline-formula> in four-dimensional Euclidean space. We define a family of tangent height functions of a curve on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0033_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Σ</m:mi> </m:math> <jats:tex-math>Sigma </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the main tool for research and combine the relevant knowledge of singularity theory. It is shown that there are three types of singularities of spherical surface, that is, in the local sense, the spherical surface is respectively diffeomorphic to the cuspidal edge, the swallowtail, and the cuspidal beaks. In addition, we give two examples of the spherical surface.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pullback attractors for fractional lattice systems with delays in weighted space 加权空间中带有延迟的分数网格系统的回拉吸引子
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-08 DOI: 10.1515/math-2024-0026
Xintao Li, Shengwen Wang
{"title":"Pullback attractors for fractional lattice systems with delays in weighted space","authors":"Xintao Li, Shengwen Wang","doi":"10.1515/math-2024-0026","DOIUrl":"https://doi.org/10.1515/math-2024-0026","url":null,"abstract":"This article deals with the asymptotic behavior of fractional lattice systems with time-varying delays in weighted space. First, we establish some sufficient conditions for the existence and uniqueness of solutions. Subsequently, we demonstrate the existence of pullback attractors for the considered fractional lattice systems.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of the recent numerical methods for solving FPDEs 最新 FPDE 数值求解方法综述
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-07 DOI: 10.1515/math-2024-0036
Fahad Alsidrani, Adem Kılıçman, Norazak Senu
{"title":"A comprehensive review of the recent numerical methods for solving FPDEs","authors":"Fahad Alsidrani, Adem Kılıçman, Norazak Senu","doi":"10.1515/math-2024-0036","DOIUrl":"https://doi.org/10.1515/math-2024-0036","url":null,"abstract":"Fractional partial differential equations (FPDEs) have gained significant attention in various scientific and engineering fields due to their ability to describe complex phenomena with memory and long-range interactions. Solving FPDEs analytically can be challenging, leading to a growing need for efficient numerical methods. This review article presents the recent analytical and numerical methods for solving FPDEs, where the fractional derivatives are assumed in Riemann-Liouville’s sense, Caputo’s sense, Atangana-Baleanu’s sense, and others. The primary objective of this study is to provide an overview of numerical techniques commonly used for FPDEs, focusing on appropriate choices of fractional derivatives and initial conditions. This article also briefly illustrates some FPDEs with exact solutions. It highlights various approaches utilized for solving these equations analytically and numerically, considering different fractional derivative concepts. The presented methods aim to expand the scope of analytical and numerical solutions available for time-FPDEs and improve the accuracy and efficiency of the techniques employed.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A singular perturbation result for a class of periodic-parabolic BVPs 一类周期性抛物线 BVP 的奇异扰动结果
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-08-06 DOI: 10.1515/math-2024-0020
Santiago Cano-Casanova, Sergio Fernández-Rincón, Julián López-Gómez
{"title":"A singular perturbation result for a class of periodic-parabolic BVPs","authors":"Santiago Cano-Casanova, Sergio Fernández-Rincón, Julián López-Gómez","doi":"10.1515/math-2024-0020","DOIUrl":"https://doi.org/10.1515/math-2024-0020","url":null,"abstract":"In this article, we obtain a very sharp version of some singular perturbation results going back to Dancer and Hess [<jats:italic>Behaviour of a semilinear periodic-parabolic problem when a parameter is small</jats:italic>, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12–19] and Daners and López-Gómez [<jats:italic>The singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions</jats:italic>, J. Dynam. Differential Equations 6 (1994), 659–670] valid for a general class of semilinear periodic-parabolic problems of logistic type under general boundary conditions of mixed type. The results of Dancer and Hess [<jats:italic>Behaviour of a semilinear periodic-parabolic problem when a parameter is small</jats:italic>, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12–19] and [<jats:italic>The singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions</jats:italic>, J. Dynam. Differential Equations 6 (1994), 659–670] were found, respectively, for Neumann and Dirichlet boundary conditions with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0020_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">L</m:mi> <m:mo>=</m:mo> <m:mo>−</m:mo> <m:mi>Δ</m:mi> </m:math> <jats:tex-math>{mathfrak{L}}=-Delta </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0020_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">L</m:mi> </m:math> <jats:tex-math>{mathfrak{L}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> stands for a general second-order elliptic operator.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信