Santiago Cano-Casanova, Sergio Fernández-Rincón, Julián López-Gómez
{"title":"A singular perturbation result for a class of periodic-parabolic BVPs","authors":"Santiago Cano-Casanova, Sergio Fernández-Rincón, Julián López-Gómez","doi":"10.1515/math-2024-0020","DOIUrl":null,"url":null,"abstract":"In this article, we obtain a very sharp version of some singular perturbation results going back to Dancer and Hess [<jats:italic>Behaviour of a semilinear periodic-parabolic problem when a parameter is small</jats:italic>, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12–19] and Daners and López-Gómez [<jats:italic>The singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions</jats:italic>, J. Dynam. Differential Equations 6 (1994), 659–670] valid for a general class of semilinear periodic-parabolic problems of logistic type under general boundary conditions of mixed type. The results of Dancer and Hess [<jats:italic>Behaviour of a semilinear periodic-parabolic problem when a parameter is small</jats:italic>, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12–19] and [<jats:italic>The singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions</jats:italic>, J. Dynam. Differential Equations 6 (1994), 659–670] were found, respectively, for Neumann and Dirichlet boundary conditions with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0020_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">L</m:mi> <m:mo>=</m:mo> <m:mo>−</m:mo> <m:mi>Δ</m:mi> </m:math> <jats:tex-math>{\\mathfrak{L}}=-\\Delta </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0020_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">L</m:mi> </m:math> <jats:tex-math>{\\mathfrak{L}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> stands for a general second-order elliptic operator.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we obtain a very sharp version of some singular perturbation results going back to Dancer and Hess [Behaviour of a semilinear periodic-parabolic problem when a parameter is small, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12–19] and Daners and López-Gómez [The singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions, J. Dynam. Differential Equations 6 (1994), 659–670] valid for a general class of semilinear periodic-parabolic problems of logistic type under general boundary conditions of mixed type. The results of Dancer and Hess [Behaviour of a semilinear periodic-parabolic problem when a parameter is small, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp. 12–19] and [The singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions, J. Dynam. Differential Equations 6 (1994), 659–670] were found, respectively, for Neumann and Dirichlet boundary conditions with L=−Δ{\mathfrak{L}}=-\Delta . In this article, L{\mathfrak{L}} stands for a general second-order elliptic operator.
在本文中,我们得到了一些奇异扰动结果的非常尖锐的版本,这些结果可追溯到 Dancer 和 Hess [Behaviour of a semilinear periodic-parabolic problem when a parameter is small, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp.Differential Equations 6 (1994), 659-670] 对混合型一般边界条件下的一般类 logistic 半线性周期-抛物问题有效。Dancer 和 Hess [Behaviour of a semilinear periodic-parabolic problem when a parameter is small, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag, Berlin, 1990, pp.Differential Equations 6 (1994), 659-670] 分别发现了 L = - Δ {mathfrak{L}}=-\Delta 的 Neumann 和 Dirichlet 边界条件。本文中,L {\mathfrak{L}} 代表一般二阶椭圆算子。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.