求助PDF
{"title":"gcd(χ(1), χc (1))为质数的有限群","authors":"Li Gao, Zhongbi Wang, Guiyun Chen","doi":"10.1515/math-2024-0037","DOIUrl":null,"url":null,"abstract":"The aim of this article is to study how the greatest common divisor of the degree and codegree of an irreducible character of a finite group influences its structure. We study a finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{\\gcd }}\\left(\\chi \\left(1),{\\chi }^{c}\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> a prime for almost all irreducible characters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> </m:math> <jats:tex-math>\\chi </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and obtain the following two conclusions: <jats:list list-type=\"custom\"> <jats:list-item> <jats:label>(1)</jats:label> There does not exist any finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{\\gcd }}\\left(\\chi \\left(1),{\\chi }^{c}\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Irr</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\chi \\in {\\rm{Irr}}{\\left(G)}^{\\sharp }</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Irr</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\rm{Irr}}{\\left(G)}^{\\sharp }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of non-principal irreducible characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>(2)</jats:label> Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite group, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{\\gcd }}\\left(\\chi \\left(1),{\\chi }^{c}\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Irr</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>\\</m:mo> <m:mi mathvariant=\"normal\">Lin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\chi \\left\\in {\\rm{Irr}}\\left(G)\\backslash {\\rm{Lin}}\\left(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_014.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> is solvable, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_015.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Lin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Lin}}\\left(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of all linear irreducible characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_016.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> </jats:list>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite groups with gcd(χ(1), χc (1)) a prime\",\"authors\":\"Li Gao, Zhongbi Wang, Guiyun Chen\",\"doi\":\"10.1515/math-2024-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article is to study how the greatest common divisor of the degree and codegree of an irreducible character of a finite group influences its structure. We study a finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\\\rm{\\\\gcd }}\\\\left(\\\\chi \\\\left(1),{\\\\chi }^{c}\\\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> a prime for almost all irreducible characters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>χ</m:mi> </m:math> <jats:tex-math>\\\\chi </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and obtain the following two conclusions: <jats:list list-type=\\\"custom\\\"> <jats:list-item> <jats:label>(1)</jats:label> There does not exist any finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\\\rm{\\\\gcd }}\\\\left(\\\\chi \\\\left(1),{\\\\chi }^{c}\\\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>χ</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"normal\\\">Irr</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\\\chi \\\\in {\\\\rm{Irr}}{\\\\left(G)}^{\\\\sharp }</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Irr</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\\\rm{Irr}}{\\\\left(G)}^{\\\\sharp }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of non-principal irreducible characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>(2)</jats:label> Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_011.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite group, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_012.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\\\rm{\\\\gcd }}\\\\left(\\\\chi \\\\left(1),{\\\\chi }^{c}\\\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_013.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>χ</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"normal\\\">Irr</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>\\\\</m:mo> <m:mi mathvariant=\\\"normal\\\">Lin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\chi \\\\left\\\\in {\\\\rm{Irr}}\\\\left(G)\\\\backslash {\\\\rm{Lin}}\\\\left(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_014.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> is solvable, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_015.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Lin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\\\rm{Lin}}\\\\left(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of all linear irreducible characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0037_eq_016.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> </jats:list>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0037\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Finite groups with gcd(χ(1), χc (1)) a prime
The aim of this article is to study how the greatest common divisor of the degree and codegree of an irreducible character of a finite group influences its structure. We study a finite group G G with gcd ( χ ( 1 ) , χ c ( 1 ) ) {\rm{\gcd }}\left(\chi \left(1),{\chi }^{c}\left(1)) a prime for almost all irreducible characters χ \chi of G G , and obtain the following two conclusions: (1) There does not exist any finite group G G such that gcd ( χ ( 1 ) , χ c ( 1 ) ) {\rm{\gcd }}\left(\chi \left(1),{\chi }^{c}\left(1)) is a prime, for each χ ∈ Irr ( G ) ♯ \chi \in {\rm{Irr}}{\left(G)}^{\sharp } , where Irr ( G ) ♯ {\rm{Irr}}{\left(G)}^{\sharp } is the set of non-principal irreducible characters of G G . (2) Let G G be a finite group, if gcd ( χ ( 1 ) , χ c ( 1 ) ) {\rm{\gcd }}\left(\chi \left(1),{\chi }^{c}\left(1)) is a prime, for each χ ∈ Irr ( G ) \ Lin ( G ) \chi \left\in {\rm{Irr}}\left(G)\backslash {\rm{Lin}}\left(G) , then G G is solvable, where Lin ( G ) {\rm{Lin}}\left(G) is the set of all linear irreducible characters of G G .