Finite groups with gcd(χ(1), χc (1)) a prime

IF 1 4区 数学 Q1 MATHEMATICS
Li Gao, Zhongbi Wang, Guiyun Chen
{"title":"Finite groups with gcd(χ(1), χc (1)) a prime","authors":"Li Gao, Zhongbi Wang, Guiyun Chen","doi":"10.1515/math-2024-0037","DOIUrl":null,"url":null,"abstract":"The aim of this article is to study how the greatest common divisor of the degree and codegree of an irreducible character of a finite group influences its structure. We study a finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{\\gcd }}\\left(\\chi \\left(1),{\\chi }^{c}\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> a prime for almost all irreducible characters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> </m:math> <jats:tex-math>\\chi </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and obtain the following two conclusions: <jats:list list-type=\"custom\"> <jats:list-item> <jats:label>(1)</jats:label> There does not exist any finite group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{\\gcd }}\\left(\\chi \\left(1),{\\chi }^{c}\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Irr</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\chi \\in {\\rm{Irr}}{\\left(G)}^{\\sharp }</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Irr</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\rm{Irr}}{\\left(G)}^{\\sharp }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of non-principal irreducible characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>(2)</jats:label> Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite group, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">gcd</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>χ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>χ</m:mi> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{\\gcd }}\\left(\\chi \\left(1),{\\chi }^{c}\\left(1))</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Irr</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>\\</m:mo> <m:mi mathvariant=\"normal\">Lin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\chi \\left\\in {\\rm{Irr}}\\left(G)\\backslash {\\rm{Lin}}\\left(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_014.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> is solvable, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_015.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Lin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Lin}}\\left(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of all linear irreducible characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0037_eq_016.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> </jats:list>","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to study how the greatest common divisor of the degree and codegree of an irreducible character of a finite group influences its structure. We study a finite group G G with gcd ( χ ( 1 ) , χ c ( 1 ) ) {\rm{\gcd }}\left(\chi \left(1),{\chi }^{c}\left(1)) a prime for almost all irreducible characters χ \chi of G G , and obtain the following two conclusions: (1) There does not exist any finite group G G such that gcd ( χ ( 1 ) , χ c ( 1 ) ) {\rm{\gcd }}\left(\chi \left(1),{\chi }^{c}\left(1)) is a prime, for each χ Irr ( G ) \chi \in {\rm{Irr}}{\left(G)}^{\sharp } , where Irr ( G ) {\rm{Irr}}{\left(G)}^{\sharp } is the set of non-principal irreducible characters of G G . (2) Let G G be a finite group, if gcd ( χ ( 1 ) , χ c ( 1 ) ) {\rm{\gcd }}\left(\chi \left(1),{\chi }^{c}\left(1)) is a prime, for each χ Irr ( G ) \ Lin ( G ) \chi \left\in {\rm{Irr}}\left(G)\backslash {\rm{Lin}}\left(G) , then G G is solvable, where Lin ( G ) {\rm{Lin}}\left(G) is the set of all linear irreducible characters of G G .
gcd(χ(1), χc (1))为质数的有限群
本文的目的是研究有限群不可还原特征的度数和代号的最大公因子如何影响其结构。我们研究一个有限群 G,其 gcd ( χ ( 1 ) , χ c ( 1 ) ) {\rm{gcd }}\left(\chi \left(1),{\chi}^{c}\left(1))是 G G 的几乎所有不可还原字符 χ \chi 的素数,并得到以下两个结论:(1)不存在任何有限群 G G,使得 gcd ( χ ( 1 ) , χ c ( 1 ) ) {\chi \left(1),{\chi}^{c}\left(1))是素数,对于每个 χ ∈ Irr ( G ) ♯ \chi \ in {\rm{Irr}}{left(G)}^{\sharp },其中 Irr ( G ) ♯ \chi \在{\rm{Irr}}{left(G)}^{\sharp }中。 (2) 让 G G 是一个有限群,如果 gcd ( χ ( 1 ) , χ c ( 1 ) ) (1),{\chi }^{c}\left(1)) 是素数,对于每个 χ ∈ Irr ( G ) \ Lin ( G ) \chi \left\in {\rm{Irr}}\left(G)\backslash {\rm{Lin}}\left(G) 、则 G G 是可解的,其中 Lin ( G ) {\rm{Lin}}\left(G) 是 G G 的所有线性不可还原字符的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信