R4 中球面的奇异点

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haiming Liu, Yuefeng Hua, Wanzhen Li
{"title":"R4 中球面的奇异点","authors":"Haiming Liu, Yuefeng Hua, Wanzhen Li","doi":"10.1515/math-2024-0033","DOIUrl":null,"url":null,"abstract":"In this article, we mainly study the geometric properties of spherical surface of a curve on a hypersurface <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0033_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Σ</m:mi> </m:math> <jats:tex-math>\\Sigma </jats:tex-math> </jats:alternatives> </jats:inline-formula> in four-dimensional Euclidean space. We define a family of tangent height functions of a curve on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0033_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Σ</m:mi> </m:math> <jats:tex-math>\\Sigma </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the main tool for research and combine the relevant knowledge of singularity theory. It is shown that there are three types of singularities of spherical surface, that is, in the local sense, the spherical surface is respectively diffeomorphic to the cuspidal edge, the swallowtail, and the cuspidal beaks. In addition, we give two examples of the spherical surface.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularities of spherical surface in R4\",\"authors\":\"Haiming Liu, Yuefeng Hua, Wanzhen Li\",\"doi\":\"10.1515/math-2024-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we mainly study the geometric properties of spherical surface of a curve on a hypersurface <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0033_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Σ</m:mi> </m:math> <jats:tex-math>\\\\Sigma </jats:tex-math> </jats:alternatives> </jats:inline-formula> in four-dimensional Euclidean space. We define a family of tangent height functions of a curve on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0033_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Σ</m:mi> </m:math> <jats:tex-math>\\\\Sigma </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the main tool for research and combine the relevant knowledge of singularity theory. It is shown that there are three types of singularities of spherical surface, that is, in the local sense, the spherical surface is respectively diffeomorphic to the cuspidal edge, the swallowtail, and the cuspidal beaks. In addition, we give two examples of the spherical surface.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0033\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究四维欧几里得空间中超曲面 Σ \Sigma 上曲线球面的几何性质。我们定义了 Σ \Sigma 上曲线的切高函数族作为主要研究工具,并结合奇点理论的相关知识。研究表明,球面存在三种奇异性,即在局部意义上,球面分别衍射为尖顶边、燕尾和尖顶喙。此外,我们还举了两个球面的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularities of spherical surface in R4
In this article, we mainly study the geometric properties of spherical surface of a curve on a hypersurface Σ \Sigma in four-dimensional Euclidean space. We define a family of tangent height functions of a curve on Σ \Sigma as the main tool for research and combine the relevant knowledge of singularity theory. It is shown that there are three types of singularities of spherical surface, that is, in the local sense, the spherical surface is respectively diffeomorphic to the cuspidal edge, the swallowtail, and the cuspidal beaks. In addition, we give two examples of the spherical surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信