{"title":"A comprehensive review of the recent numerical methods for solving FPDEs","authors":"Fahad Alsidrani, Adem Kılıçman, Norazak Senu","doi":"10.1515/math-2024-0036","DOIUrl":null,"url":null,"abstract":"Fractional partial differential equations (FPDEs) have gained significant attention in various scientific and engineering fields due to their ability to describe complex phenomena with memory and long-range interactions. Solving FPDEs analytically can be challenging, leading to a growing need for efficient numerical methods. This review article presents the recent analytical and numerical methods for solving FPDEs, where the fractional derivatives are assumed in Riemann-Liouville’s sense, Caputo’s sense, Atangana-Baleanu’s sense, and others. The primary objective of this study is to provide an overview of numerical techniques commonly used for FPDEs, focusing on appropriate choices of fractional derivatives and initial conditions. This article also briefly illustrates some FPDEs with exact solutions. It highlights various approaches utilized for solving these equations analytically and numerically, considering different fractional derivative concepts. The presented methods aim to expand the scope of analytical and numerical solutions available for time-FPDEs and improve the accuracy and efficiency of the techniques employed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fractional partial differential equations (FPDEs) have gained significant attention in various scientific and engineering fields due to their ability to describe complex phenomena with memory and long-range interactions. Solving FPDEs analytically can be challenging, leading to a growing need for efficient numerical methods. This review article presents the recent analytical and numerical methods for solving FPDEs, where the fractional derivatives are assumed in Riemann-Liouville’s sense, Caputo’s sense, Atangana-Baleanu’s sense, and others. The primary objective of this study is to provide an overview of numerical techniques commonly used for FPDEs, focusing on appropriate choices of fractional derivatives and initial conditions. This article also briefly illustrates some FPDEs with exact solutions. It highlights various approaches utilized for solving these equations analytically and numerically, considering different fractional derivative concepts. The presented methods aim to expand the scope of analytical and numerical solutions available for time-FPDEs and improve the accuracy and efficiency of the techniques employed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.