Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165231224597
Michal Fereczkowski, Raul H Sanchez-Lopez, Stine Christiansen, Tobias Neher
{"title":"Amplitude Compression for Preventing Rollover at Above-Conversational Speech Levels.","authors":"Michal Fereczkowski, Raul H Sanchez-Lopez, Stine Christiansen, Tobias Neher","doi":"10.1177/23312165231224597","DOIUrl":"10.1177/23312165231224597","url":null,"abstract":"<p><p>Hearing aids provide nonlinear amplification to improve speech audibility and loudness perception. While more audibility typically increases speech intelligibility at low levels, the same is not true for above-conversational levels, where decreases in intelligibility (\"rollover\") can occur. In a previous study, we found rollover in speech intelligibility measurements made in quiet for 35 out of 74 test ears with a hearing loss. Furthermore, we found rollover occurrence in quiet to be associated with poorer speech intelligibility in noise as measured with linear amplification. Here, we retested 16 participants with rollover with three amplitude-compression settings. Two were designed to prevent rollover by applying slow- or fast-acting compression with a 5:1 compression ratio around the \"sweet spot,\" that is, the area in an individual performance-intensity function with high intelligibility and listening comfort. The third, reference setting used gains and compression ratios prescribed by the \"National Acoustic Laboratories Non-Linear 1\" rule. Speech intelligibility was assessed in quiet and in noise. Pairwise preference judgments were also collected. For speech levels of 70 dB SPL and above, slow-acting sweet-spot compression gave better intelligibility in quiet and noise than the reference setting. Additionally, the participants clearly preferred slow-acting sweet-spot compression over the other settings. At lower levels, the three settings gave comparable speech intelligibility, and the participants preferred the reference setting over both sweet-spot settings. Overall, these results suggest that, for listeners with rollover, slow-acting sweet-spot compression is beneficial at 70 dB SPL and above, while at lower levels clinically established gain targets are more suited.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165241239541
Naomi F Bramhall, Garnett P McMillan
{"title":"Perceptual Consequences of Cochlear Deafferentation in Humans.","authors":"Naomi F Bramhall, Garnett P McMillan","doi":"10.1177/23312165241239541","DOIUrl":"10.1177/23312165241239541","url":null,"abstract":"<p><p>Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165241262517
Daniel Oberfeld, Katharina Staab, Florian Kattner, Wolfgang Ellermeier
{"title":"Is Recognition of Speech in Noise Related to Memory Disruption Caused by Irrelevant Sound?","authors":"Daniel Oberfeld, Katharina Staab, Florian Kattner, Wolfgang Ellermeier","doi":"10.1177/23312165241262517","DOIUrl":"10.1177/23312165241262517","url":null,"abstract":"<p><p>Listeners with normal audiometric thresholds show substantial variability in their ability to understand speech in noise (SiN). These individual differences have been reported to be associated with a range of auditory and cognitive abilities. The present study addresses the association between SiN processing and the individual susceptibility of short-term memory to auditory distraction (i.e., the irrelevant sound effect [ISE]). In a sample of 67 young adult participants with normal audiometric thresholds, we measured speech recognition performance in a spatial listening task with two interfering talkers (speech-in-speech identification), audiometric thresholds, binaural sensitivity to the temporal fine structure (interaural phase differences [IPD]), serial memory with and without interfering talkers, and self-reported noise sensitivity. Speech-in-speech processing was not significantly associated with the ISE. The most important predictors of high speech-in-speech recognition performance were a large short-term memory span, low IPD thresholds, bilaterally symmetrical audiometric thresholds, and low individual noise sensitivity. Surprisingly, the susceptibility of short-term memory to irrelevant sound accounted for a substantially smaller amount of variance in speech-in-speech processing than the nondisrupted short-term memory capacity. The data confirm the role of binaural sensitivity to the temporal fine structure, although its association to SiN recognition was weaker than in some previous studies. The inverse association between self-reported noise sensitivity and SiN processing deserves further investigation.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165241232219
L Behtani, D Paromov, K Moïn-Darbari, M S Houde, B A Bacon, M Maheu, T Leroux, F Champoux
{"title":"Hearing Aid Amplification Improves Postural Control for Older Adults With Hearing Loss When Other Sensory Cues Are Impoverished.","authors":"L Behtani, D Paromov, K Moïn-Darbari, M S Houde, B A Bacon, M Maheu, T Leroux, F Champoux","doi":"10.1177/23312165241232219","DOIUrl":"10.1177/23312165241232219","url":null,"abstract":"<p><p>Recent studies suggest that sound amplification via hearing aids can improve postural control in adults with hearing impairments. Unfortunately, only a few studies used well-defined posturography measures to assess balance in adults with hearing loss with and without their hearing aids. Of these, only two examined postural control specifically in the elderly with hearing loss. The present study examined the impact of hearing aid use on postural control during various sensory perturbations in older adults with age-related hearing loss. Thirty individuals with age-related hearing impairments and using hearing aids bilaterally were tested. Participants were asked to perform a modified clinical sensory integration in balance test on a force platform with and without hearing aids. The experiment was conducted in the presence of a broadband noise ranging from 0.1 to 4 kHz presented through a loudspeaker. As expected, hearing aid use had a beneficial impact on postural control, but only when visual and somatosensory inputs were both reduced. Data also suggest that hearing aid use decreases the dependence on somatosensory input for maintaining postural control. This finding can be of particular importance in older adults considering the reduction of tactile and proprioceptive sensitivity and acuity often associated with aging. These results provide an additional argument for encouraging early hearing aid fitting for people with hearing loss.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165231224643
Dianne J Mecklenburg, Petra L Graham, Chris J James
{"title":"Relationships Between Speech, Spatial and Qualities of Hearing Short Form SSQ12 Item Scores and their Use in Guiding Rehabilitation for Cochlear Implant Recipients.","authors":"Dianne J Mecklenburg, Petra L Graham, Chris J James","doi":"10.1177/23312165231224643","DOIUrl":"10.1177/23312165231224643","url":null,"abstract":"<p><p>Cochlear implantation successfully improves hearing in most adult recipients. However, in rare cases, post-implant rehabilitation is required to maximize benefit. The primary aim of this investigation was to test if self-reports by cochlear implant users indicate the need for post-implant rehabilitation. Listening performance was assessed with the Speech, Spatial and Qualities short-form SSQ12, which was self-administered via a web-based survey. Subjects included over 2000 adult bilateral or unilateral cochlear implant users with at least one year of experience. A novel application of regression tree analysis identified core SSQ12 items that serve as first steps in establishing a plan for further rehabilitation: items 1, 8, and 11 dealing with single-talker situations, loudness perception, and clarity, respectively. Further regression and classification tree analyses revealed that SSQ12 item scores were weakly related to age, degree of tinnitus, and use of bilateral versus unilateral implants. Conversely, SSQ12 scores were strongly associated with self-rated satisfaction and confidence in using their cochlear implant. The SSQ12 total scores did not vary significantly over 1-9 or more years' experience. These findings suggest that the SSQ12 may be a useful tool to guide rehabilitation at any time after cochlear implantation. Identification of poor performance may have implications for timely management to improve the outcomes, through various techniques such as device fitting adjustments, counseling, active sound exposure, and training spatial hearing.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165241286456
Nicolas Wallaert, Antoine Perry, Hadrien Jean, Gwenaelle Creff, Benoit Godey, Nihaad Paraouty
{"title":"Performance and Reliability Evaluation of an Automated Bone-Conduction Audiometry Using Machine Learning.","authors":"Nicolas Wallaert, Antoine Perry, Hadrien Jean, Gwenaelle Creff, Benoit Godey, Nihaad Paraouty","doi":"10.1177/23312165241286456","DOIUrl":"https://doi.org/10.1177/23312165241286456","url":null,"abstract":"<p><p>To date, pure-tone audiometry remains the gold standard for clinical auditory testing. However, pure-tone audiometry is time-consuming and only provides a discrete estimate of hearing acuity. Here, we aim to address these two main drawbacks by developing a machine learning (ML)-based approach for fully automated bone-conduction (BC) audiometry tests with forehead vibrator placement. Study 1 examines the occlusion effects when the headphones are positioned on both ears during BC forehead testing. Study 2 describes the ML-based approach for BC audiometry, with automated contralateral masking rules, compensation for occlusion effects and forehead-mastoid corrections. Next, the performance of ML-audiometry is examined in comparison to manual and conventional BC audiometry with mastoid placement. Finally, Study 3 examines the test-retest reliability of ML-audiometry. Our results show no significant performance difference between automated ML-audiometry and manual conventional audiometry. High test-retest reliability is achieved with the automated ML-audiometry. Together, our findings demonstrate the performance and reliability of the automated ML-based BC audiometry for both normal-hearing and hearing-impaired adult listeners with mild to severe hearing losses.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165241260621
Mira Van Wilderode, Nathan Van Humbeeck, Ralf Krampe, Astrid van Wieringen
{"title":"Speech-Identification During Standing as a Multitasking Challenge for Young, Middle-Aged and Older Adults.","authors":"Mira Van Wilderode, Nathan Van Humbeeck, Ralf Krampe, Astrid van Wieringen","doi":"10.1177/23312165241260621","DOIUrl":"10.1177/23312165241260621","url":null,"abstract":"<p><p>While listening, we commonly participate in simultaneous activities. For instance, at receptions people often stand while engaging in conversation. It is known that listening and postural control are associated with each other. Previous studies focused on the interplay of listening and postural control when the speech identification task had rather high cognitive control demands. This study aimed to determine whether listening and postural control interact when the speech identification task requires minimal cognitive control, i.e., when words are presented without background noise, or a large memory load. This study included 22 young adults, 27 middle-aged adults, and 21 older adults. Participants performed a speech identification task (auditory single task), a postural control task (posture single task) and combined postural control and speech identification tasks (dual task) to assess the effects of multitasking. The difficulty levels of the listening and postural control tasks were manipulated by altering the level of the words (25 or 30 dB SPL) and the mobility of the platform (stable or moving). The sound level was increased for adults with a hearing impairment. In the dual-task, listening performance decreased, especially for middle-aged and older adults, while postural control improved. These results suggest that even when cognitive control demands for listening are minimal, interaction with postural control occurs. Correlational analysis revealed that hearing loss was a better predictor than age of speech identification and postural control.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165241273342
Larry E Humes, Sumitrajit Dhar, Vinaya Manchaiah, Anu Sharma, Theresa H Chisolm, Michelle L Arnold, Victoria A Sanchez
{"title":"A Perspective on Auditory Wellness: What It Is, Why It Is Important, and How It Can Be Managed.","authors":"Larry E Humes, Sumitrajit Dhar, Vinaya Manchaiah, Anu Sharma, Theresa H Chisolm, Michelle L Arnold, Victoria A Sanchez","doi":"10.1177/23312165241273342","DOIUrl":"10.1177/23312165241273342","url":null,"abstract":"<p><p>During the last decade, there has been a move towards consumer-centric hearing healthcare. This is a direct result of technological advancements (e.g., merger of consumer grade hearing aids with consumer grade earphones creating a wide range of hearing devices) as well as policy changes (e.g., the U.S. Food and Drug Administration creating a new over-the-counter [OTC] hearing aid category). In addition to various direct-to-consumer (DTC) hearing devices available on the market, there are also several validated tools for the self-assessment of auditory function and the detection of ear disease, as well as tools for education about hearing loss, hearing devices, and communication strategies. Further, all can be made easily available to a wide range of people. This <i>perspective</i> provides a framework and identifies tools to improve and maintain optimal auditory wellness across the adult life course. A broadly available and accessible set of tools that can be made available on a digital platform to aid adults in the assessment and as needed, the improvement, of auditory wellness is discussed.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in HearingPub Date : 2024-01-01DOI: 10.1177/23312165241261490
Saskia Ibelings, Thomas Brand, Esther Ruigendijk, Inga Holube
{"title":"Development of a Phrase-Based Speech-Recognition Test Using Synthetic Speech.","authors":"Saskia Ibelings, Thomas Brand, Esther Ruigendijk, Inga Holube","doi":"10.1177/23312165241261490","DOIUrl":"10.1177/23312165241261490","url":null,"abstract":"<p><p>Speech-recognition tests are widely used in both clinical and research audiology. The purpose of this study was the development of a novel speech-recognition test that combines concepts of different speech-recognition tests to reduce training effects and allows for a large set of speech material. The new test consists of four different words per trial in a meaningful construct with a fixed structure, the so-called phrases. Various free databases were used to select the words and to determine their frequency. Highly frequent nouns were grouped into thematic categories and combined with related adjectives and infinitives. After discarding inappropriate and unnatural combinations, and eliminating duplications of (sub-)phrases, a total number of 772 phrases remained. Subsequently, the phrases were synthesized using a text-to-speech system. The synthesis significantly reduces the effort compared to recordings with a real speaker. After excluding outliers, measured speech-recognition scores for the phrases with 31 normal-hearing participants at fixed signal-to-noise ratios (SNR) revealed speech-recognition thresholds (SRT) for each phrase varying up to 4 dB. The median SRT was -9.1 dB SNR and thus comparable to existing sentence tests. The psychometric function's slope of 15 percentage points per dB is also comparable and enables efficient use in audiology. Summarizing, the principle of creating speech material in a modular system has many potential applications.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ADT Network: A Novel Nonlinear Method for Decoding Speech Envelopes From EEG Signals.","authors":"Ruixiang Liu, Chang Liu, Dan Cui, Huan Zhang, Xinmeng Xu, Yuxin Duan, Yihu Chao, Xianzheng Sha, Limin Sun, Xiulan Ma, Shuo Li, Shijie Chang","doi":"10.1177/23312165241282872","DOIUrl":"https://doi.org/10.1177/23312165241282872","url":null,"abstract":"<p><p>Decoding speech envelopes from electroencephalogram (EEG) signals holds potential as a research tool for objectively assessing auditory processing, which could contribute to future developments in hearing loss diagnosis. However, current methods struggle to meet both high accuracy and interpretability. We propose a deep learning model called the auditory decoding transformer (ADT) network for speech envelope reconstruction from EEG signals to address these issues. The ADT network uses spatio-temporal convolution for feature extraction, followed by a transformer decoder to decode the speech envelopes. Through anticausal masking, the ADT considers only the current and future EEG features to match the natural relationship of speech and EEG. Performance evaluation shows that the ADT network achieves average reconstruction scores of 0.168 and 0.167 on the SparrKULee and DTU datasets, respectively, rivaling those of other nonlinear models. Furthermore, by visualizing the weights of the spatio-temporal convolution layer as time-domain filters and brain topographies, combined with an ablation study of the temporal convolution kernels, we analyze the behavioral patterns of the ADT network in decoding speech envelopes. The results indicate that low- (0.5-8 Hz) and high-frequency (14-32 Hz) EEG signals are more critical for envelope reconstruction and that the active brain regions are primarily distributed bilaterally in the auditory cortex, consistent with previous research. Visualization of attention scores further validated previous research. In summary, the ADT network balances high performance and interpretability, making it a promising tool for studying neural speech envelope tracking.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}