Chun Zhou , Li Zhou , Juan Du , JiaJia Yue , Tianqi Ao
{"title":"Accuracy evaluation and comparison of GSMaP series for retrieving precipitation on the eastern edge of the Qinghai-Tibet Plateau","authors":"Chun Zhou , Li Zhou , Juan Du , JiaJia Yue , Tianqi Ao","doi":"10.1016/j.ejrh.2024.102017","DOIUrl":"10.1016/j.ejrh.2024.102017","url":null,"abstract":"<div><h3>Study Region</h3><div>Min River Basin on the eastern Qinghai-Tibet Plateau.</div></div><div><h3>Study Focus</h3><div>Precipitation is critical for hydrological processes, making accurate data essential for water management and flood forecasting. Satellite precipitation products offer valuable high-resolution spatiotemporal information, with the GSMaP series being widely used. However, comprehensive evaluations of different versions are limited. This study assesses the accuracy of Gauge and MVK products (versions 06, 07, and 08) across spatial and temporal scales and evaluates their performance in detecting precipitation events of varying intensities.</div></div><div><h3>New Hydrological Insights for the Study Region</h3><div>(1) GSMaP versions 06 and 07 exhibit higher detection rates for precipitation events, with POD values exceeding 0.8, while version 08 has a lower false alarm rate, with FAR values below 0.15. (2) GSMaP products are more successful in capturing precipitation events during the rainy season than the dry season. (3) With increasing elevation, the Gauge product consistently maintains a high hit rate and reduced false alarm rate, whereas the MVK product's hit rates improve. (4) For different rainfall intensities, GSMaP products more accurately detect moderate and heavy rain events, with the Gauge product outperforming the MVK product in terms of accuracy. These insights enhance the understanding of GSMaP product performance on eastern edge of the Qinghai-Tibet Plateau, aiding in improved water management practices.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102017"},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using reanalysis precipitation data for developing intensity-duration-frequency curves in a poorly gauged city","authors":"Frank Joseph Wambura","doi":"10.1016/j.ejrh.2024.102005","DOIUrl":"10.1016/j.ejrh.2024.102005","url":null,"abstract":"<div><h3>Study region</h3><div>The Msimbazi River catchment traversing Dar es Salaam city in east-central Tanzania.</div></div><div><h3>Study focus</h3><div>The lack of high-resolution rainfall data in cities in developing countries hinders the development of suitable intensity–duration–frequency (IDF) curves for designing and evaluating hydraulic structures. Thus, this study investigated the potential of relatively high-resolution reanalysis precipitation data for developing IDF curves in the poorly gauged Msimbazi River catchment in Dar es Salaam city. The time series of hourly ERA5-Land reanalysis precipitation data were used to generate the annual maximum series at four selected points in the river catchment. These were subsequently bias-corrected using parameters derived from limited observed rainfall data. The bias-corrected annual maximum series of reanalysis precipitation (AMSRP) data were fitted with the best probability distribution functions, which were then used to estimate quantiles of IDF curves for various annual exceedance probabilities.</div></div><div><h3>New hydrological insights</h3><div>The findings revealed that uncorrected AMSRP data would have underestimated rainfall intensities in this region by a factor of two to six. Different areas in the Msimbazi River catchment have different rainfall distributions and IDF curves. Thus, no single set of IDF curves can represent rainfall intensities in the entire river catchment. Due to the potential of relatively high-resolution reanalysis precipitation data, designs and evaluations of hydraulic structures in poorly gauged cities are encouraged to use bias-corrected and location-specific IDF curves.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102005"},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Guyennon , S. Passaretti , C. Mineo , E. Boscariol , A.B. Petrangeli , A. Varriale , E. Romano
{"title":"A parsimonious model for springs discharge reconstruction and forecast for drought management: Lessons from a case study in Central Italy","authors":"N. Guyennon , S. Passaretti , C. Mineo , E. Boscariol , A.B. Petrangeli , A. Varriale , E. Romano","doi":"10.1016/j.ejrh.2024.102021","DOIUrl":"10.1016/j.ejrh.2024.102021","url":null,"abstract":"<div><h3>Study region</h3><div>Karst springs located in Central Apennine ridge (Central Italy), in the Tiber River basin.</div></div><div><h3>Study focus</h3><div>The assessment of water availability is a key issue in a water supply system because of increasing drought and water scarcity events. Analysing and predicting the dynamic behaviour of groundwater resources is challenging to conceptualize and model, especially in poorly-monitored systems. A parsimonious model based on linear regression between the monthly spring discharge time series and Standardized Precipitation Index is proposed. The model is conceived for management purposes and suitable for users with a limited background in modelling techniques, who can take advantage from an initial knowledge of the aquifers hydrological regime.</div></div><div><h3>New hydrological insights for the region</h3><div>The model developed for long-term monitored springs is used to reconstruct the historical groundwater hydrographs and to make predictions for poorly-monitored springs with similar properties, exploiting the “similarity principle”. Results highlight the notable performance of this approach, which represents a useful tool for overcoming the limitations in spring discharge monitoring networks. Moreover, the tool is used to test forecast performance enabling water managers to develop a monthly early-warning system fostering a sustainable water resource exploitation and limiting the critical issues of the water supply system, especially during drought periods. Results are discussed from the perspective of the water utilities entrusted to manage their resources in the study region.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102021"},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Changes of blue and green water in arid inland dissipation area based on coupled surface water and groundwater model","authors":"Lu Wang , Feilong Jie , Bing He","doi":"10.1016/j.ejrh.2024.102010","DOIUrl":"10.1016/j.ejrh.2024.102010","url":null,"abstract":"<div><h3>Study region</h3><div>The Mainstream in the Tarim River Basin, Southern Xinjiang, China</div></div><div><h3>Study focus</h3><div>Climate change and human activities have significantly altered the water cycle, and water security evaluation and management are urgent. In arid and semi-arid areas, the assessment of blue and green water is particularly important. In this study, the MIKE SHE model is used to simulate the spatial and temporal changes of blue and green water resources in the mainstream of the Tarim River Basin (TRB) from 1990 to 2050 under land use and climate change conditions. The scarcity and vulnerability of blue-green water are introduced to evaluate the water security of the basin. The impacts of different land uses on blue-green water resources were also calculated according to the model zoning.</div></div><div><h3>New hydrological insights for the region</h3><div>The results indicate that from 1990 to 2050, blue water resources show a spatial pattern of gradual decrease from upstream to downstream. Compared to blue water, green water is dispersed more evenly over space. Future climatic scenarios will impact water security, as will changes in blue and green water security in terms of time and space. By comparing the influence of ecological water transport on the change of blue and green water before and after 2000, it was found that environmental water transport plays a certain role in improving the blue water scarcity in downstream of the TRB. The study is significant in maintaining regional water security and ecosystem stability.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102010"},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pasquinel de la Fraga , Francisco José Del-Toro-Guerrero , Enrique R. Vivoni , Tereza Cavazos , Thomas Kretzschmar
{"title":"Evaluation of gridded precipitation datasets in mountainous terrains of Northwestern Mexico","authors":"Pasquinel de la Fraga , Francisco José Del-Toro-Guerrero , Enrique R. Vivoni , Tereza Cavazos , Thomas Kretzschmar","doi":"10.1016/j.ejrh.2024.102019","DOIUrl":"10.1016/j.ejrh.2024.102019","url":null,"abstract":"<div><h3>Study region</h3><div>The complex mountainous terrains of the Sierra Madre Occidental in northwestern Mexico.</div></div><div><h3>Study focus</h3><div>Acquiring high-resolution precipitation data in regions with limited conventional rain gauge coverage poses significant challenges. Gridded precipitation (GP) datasets, including gauge-based, satellite, and reanalysis products, provide a potential solution, but their reliability in areas with complex terrain and intricate precipitation patterns remains uncertain. This study comprehensively evaluates the performance of four GP datasets—AORC, CHIRPS, Daymet, and ERA5—in estimating precipitation. The evaluation was conducted at a daily, monthly, and seasonal timescale, further analyzing extreme precipitation, the influence of elevation, and spatial averaging across hydrologic basins, using as reference the NERN rain gauge data from 2002 to 2004.</div></div><div><h3>New hydrological insights for the region</h3><div>Results indicate that Daymet and AORC are the most accurate GP datasets for daily and monthly timescales, respectively. All datasets improve in accuracy over longer timescales but face challenges during the wet summer monsoon months and extreme events, with Daymet performing relatively better. Terrain elevation had a minimal impact on overall dataset accuracy, though a slight improvement in precipitation detection was noted as elevation increased. This work provides valuable insights into the strengths and limitations of GP datasets in regions with complex terrain and orographically-forced convective precipitation, offering practical outcomes for climate and hydrologic studies in similar regions.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102019"},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lanchu Tao , Yunhui Zhang , Xingcheng Yuan , Qingsong Chen , Jinhai Yu , Yiqi Ma , Honghao Liu , Chunlin Tu
{"title":"Hydrological processes in multi-layered aquifers of a karst watershed with coal mining activity: Insights from hydrochemistry and isotopes","authors":"Lanchu Tao , Yunhui Zhang , Xingcheng Yuan , Qingsong Chen , Jinhai Yu , Yiqi Ma , Honghao Liu , Chunlin Tu","doi":"10.1016/j.ejrh.2024.102016","DOIUrl":"10.1016/j.ejrh.2024.102016","url":null,"abstract":"<div><h3>Study region</h3><div>The Laochang Karst watershed (LCKW) is located in eastern Yunnan Province, southwestern China. It is the representative karst area affected by coal-mining activities in southwestern China.</div></div><div><h3>Study focus</h3><div>Identifying hydrological processes of multi-layered aquifers in karst watersheds is challenging due to complex natural and anthropogenic processes. This study attempts to clarify the hydrological conceptual model of the LCKW using hydrochemistry and D, O, Sr, S, and C isotopes.</div></div><div><h3>New hydrological insights for the region</h3><div>Surface water and multi-layered groundwater have the hydrochemical types of SO<sub>4</sub>-Ca·Mg, HCO<sub>3</sub>·SO<sub>4</sub>-Ca, and HCO<sub>3</sub>-Ca. Meteoric water and condensate were the major recharge sources. The main processes dominating hydrochemical compositions consist of sulfide oxidative dissolution, carbonate dissolution, positive cation exchange, and agricultural activities. Elevated SO<sub>4</sub><sup>2−</sup> concentration in the mine water, river water and shallow coalbed water mainly originated from the oxidation of pyrite in the coal-bearing strata of the Longtan Formation. whereas the deeper layers and groundwater away from the mines were hardly contaminated by SO<sub>4</sub><sup>2−</sup> due to the presence of aquiclude. HCO<sub>3</sub><sup>−</sup> concentrations of surface water and multi-layered groundwater were mainly derived from carbonate dissolution and soil CO<sub>2</sub>, and mine water was also influenced by atmospheric CO<sub>2</sub>. Positive cation exchange contributed to increasing Na<sup>+</sup> concentration. Agricultural activities contributed NO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, and K<sup>+</sup> ions in aquifers, especially near large karst fallout caves. A hydrological model of multi-layered aquifers in the LCKW was built based on the above results. These findings will provide valuable guidance for understanding the hydrological processes of complex karst watersheds worldwide.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102016"},"PeriodicalIF":4.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feiyu Wang , Jun Xia , Lei Zou , Liping Zhang , Xiaoyang Li , Jiarui Yu
{"title":"Spatio-temporal heterogeneity and driving mechanism of ecosystem water use efficiency in the Loess Plateau, China","authors":"Feiyu Wang , Jun Xia , Lei Zou , Liping Zhang , Xiaoyang Li , Jiarui Yu","doi":"10.1016/j.ejrh.2024.102012","DOIUrl":"10.1016/j.ejrh.2024.102012","url":null,"abstract":"<div><h3>Study region</h3><div>The Loess Plateau, China</div></div><div><h3>Study focus</h3><div>The trade-off between carbon uptake and water loss, characterized by ecosystem water use efficiency (WUE), deeply influences ecosystem sustainability. In this study, WUE was estimated based on GPP from the Moderate Resolution Imaging Spectroradiometer (MODIS) product and ET simulated by the Priestley Taylor Jet Propulsion Laboratory (PT-JPL) model. The emerging hot spot analysis (EHSA) was used to comprehensively examine the spatio-temporal heterogeneity of WUE. Additionally, the Geodetector model was employed to identify the main drivers of WUE and quantify the interactive effects of drivers on WUE, focusing on different vegetation types.</div></div><div><h3>New hydrological insights for the region</h3><div>Results indicated obvious spatial heterogeneity of WUE under different vegetation and hydro-climatic conditions. Significant increases in WUE occurred in sub-humid cropland and grassland areas that have experienced large-scale ecological restoration and agricultural intensification. By contrast, slight decreases in WUE were observed in semi-arid grassland areas, some of which were accompanied by intensifying cold spots. It was noteworthy that WUE in some hot spots with excessive vegetation coverage also showed a slight downward trend. Further, the WUE pattern in cropland/forests/grassland was dominated by the interaction of vegetation coverage (characterized by the Normalized Difference Vegetation Index, NDVI) and precipitation/air temperature/vapor pressure deficit, with NDVI playing a leading role and hydro-climatic drivers playing a supporting role.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102012"},"PeriodicalIF":4.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remote sensing insights into water allocation and evaporation challenges in the Hirmand River Basin, after the operation of Kamal Khan Dam","authors":"Saeid Maleki , Seyed Hossein Mohajeri , Amir Samadi , Hosna Hasani , Mehry Akbary","doi":"10.1016/j.ejrh.2024.101996","DOIUrl":"10.1016/j.ejrh.2024.101996","url":null,"abstract":"<div><h3>Study Region</h3><div>The Hirmand River Basin is a vital transboundary river system, that originates in Afghanistan’s Hindu Kush Mountains and flows into the Sistan Depression, and encompassing the Chah Nimeh Reservoirs in Iran and the Godzareh Depression in Afghanistan.</div></div><div><h3>Study Focus</h3><div>The Kamal Khan Dam, constructed on the Hirmand River in Afghanistan, has significantly altered the downstream water direction and distribution between the Chah Nimeh Reservoirs and Godzareh Depression. Utilizing remote sensing techniques, particularly Landsat 8 satellite imagery and the FAO 56 PM as a evaporation retrieval method, the research focuses on evaluating changes in water allocation and evaporation rates in these regions over the past decade.</div></div><div><h3>New Hydrological Insights for the Region</h3><div>The findings reveal that after operation of the Kamal Khan Dam, water allocation to the Chah Nimeh Reservoirs has drastically decreased, leading to a 54 % reduction in their average area from 2020–2023 compared to the previous years. Conversely, the Godzareh Depression, now receiving the redirected water, has experienced significantly higher evaporation rates, contributing to substantial water losses. These changes underscore the critical need for effective water management strategies to address the escalating water scarcity and hydrological imbalances in this arid region.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 101996"},"PeriodicalIF":4.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Liu , Aihua Long , Geping Luo , Hao Wang , Denghua Yan , Xiaoya Deng
{"title":"What drives the distinct evolution of the Aral Sea and Lake Balkhash? Insights from a novel CD-RF-FA method","authors":"Shuang Liu , Aihua Long , Geping Luo , Hao Wang , Denghua Yan , Xiaoya Deng","doi":"10.1016/j.ejrh.2024.102014","DOIUrl":"10.1016/j.ejrh.2024.102014","url":null,"abstract":"<div><h3>Study Region</h3><div>The Aral Sea and Lake Balkhash.</div></div><div><h3>Study Focus</h3><div>This study explores the impacts of climate change and human activities on the inflow of the Aral Sea and Lake Balkhash, revealing the different driving factors behind the evolution of inland lakes in arid environments. To achieve this, we propose a novel approach that combines classical seasonal decomposition with Random Forest and Factor Analysis (CD-RF-FA) to quantitatively assess the influences of climate change and human activities on lake inflow.</div></div><div><h3>New Hydrological Insights for the Region</h3><div>During the period from 1960 to 1990, anthropogenic factors predominantly influenced the inflow to the lakes, contributing 89.9 %, 91.8 %, and 91.6 % to the Lake Balkhash Basin (BAK), the Syr Darya Basin (SYR), and the Amu Darya Basin (AMU), respectively. However, from 1991 to 2020, the influence of human activities diminished, and climate variables gradually dominated the changes in inflow, contributing 52.2 % and 47.2 % to BAK and SYR, respectively, with upstream inflow being the main driving factor. Additionally, reservoir construction and political factors also played significant roles in the variation of inflow, exerting direct or indirect effects. This study provides crucial insights into the complex interplay of factors affecting inland lakes in arid regions and informs strategies to mitigate the Aral Sea Syndrome.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102014"},"PeriodicalIF":4.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Wang , Yuanbo Liu , Ruonan Wang , Yongwei Liu , Xinqu Wu
{"title":"Intercomparison of reanalysis and satellite precipitation products in endorheic and exorheic basins on the Tibetan Plateau","authors":"Rong Wang , Yuanbo Liu , Ruonan Wang , Yongwei Liu , Xinqu Wu","doi":"10.1016/j.ejrh.2024.102004","DOIUrl":"10.1016/j.ejrh.2024.102004","url":null,"abstract":"<div><div>Study Region: Endorheic and exorheic basins of the Tibetan Plateau (TP). Study Focus: Reanalysis and satellite precipitation products provide alternatives for regions of sparse ground precipitation observation, but pose a tough task to select a suitable one for the TP. This study conducts a multi-scale evaluation of six reanalysis and satellite precipitation products in endorheic and exorheic basins using water balance and extended triple collocation (ETC) methods. The reanalysis precipitation products include ECMWF Re-Analysis version 5 (ERA5-Land), China Meteorological Forcing Dataset (CMFD), Global Land Data Assimilation Systems (GLDAS), and High-resolution Precipitation dataset for the Third Pole region (TPHiPr). The satellite precipitation data include Global Precipitation Measurements (GPM) and Tropical Rainfall Measuring Mission (TRMM) products. New Hydrological Insights for the Region: The precipitation products vary in accuracy from basin to basin, with better performance in exorheic than endorheic basins. Reanalysis-based ERA5-land, TPHiPr, and CMFD perform well in most basins at annual scale, among which TPHiPr performs best at daily scale. At regional scale, GPM performs well in endorheic region, and ERA5-land in exorheic region. While all the products increase significantly in accuracy from basin to regional scale in endorheic region, ERA5-land shows best performance at annual and multi-year scales in the entire region. Our findings provide valuable supports for precipitation product selection in the Tibetan endorheic and exorheic basins.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102004"},"PeriodicalIF":4.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}