沉淀网:一个基于变压器的降尺度框架,用于改进圣地亚哥县的降水预测

IF 5 2区 地球科学 Q1 WATER RESOURCES
AmirHossein Adibfar , Hassan Davani
{"title":"沉淀网:一个基于变压器的降尺度框架,用于改进圣地亚哥县的降水预测","authors":"AmirHossein Adibfar ,&nbsp;Hassan Davani","doi":"10.1016/j.ejrh.2025.102738","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>San Diego County (California, USA), with its complex topography and coastal climate variability, requires high-resolution precipitation data to support hydrological modeling and climate adaptation planning. However, the coarse spatial resolution of Global Climate Models (GCMs) limits their applicability in such a diverse and hydrologically sensitive region.</div></div><div><h3>Study focus</h3><div>This study introduces a two-stage hybrid statistical downscaling framework that combines Transformer-based deep learning with traditional machine learning for localized precipitation prediction. The goal is to downscale coarse-resolution CMIP5 precipitation data (2° × 2.5°, 3-h intervals) to a finer 10 km × 10 km grid appropriate for regional hydrological applications. The first stage employs HydroFusionNet, a Transformer-based classifier, to detect rainfall occurrence using spatial atmospheric predictors, thereby filtering out non-rain periods and improving computational efficiency. The second stage applies two regression models: a Random Forest with linear bias adjustment and PrecipNet, a Transformer-based model.</div></div><div><h3>New hydrological insights for the region</h3><div>PrecipNet achieved a Mean Absolute Error (MAE) of 1.24 mm, Root Mean Square Error (RMSE) of 1.62 mm, and R² of 0.94, outperforming the Random Forest baseline in accuracy and spatial generalization. HydroFusionNet demonstrated 92.75 % classification accuracy, enhancing rainfall detection. The framework reduces false positives, captures complex rainfall dynamics, and provides context-aware uncertainty estimation—offering a scalable, hydrologically meaningful tool for regional climate impact assessments and water resource decision-making in topographically complex areas like San Diego County.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"62 ","pages":"Article 102738"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PrecipNet: A transformer-based downscaling framework for improved precipitation prediction in San Diego County\",\"authors\":\"AmirHossein Adibfar ,&nbsp;Hassan Davani\",\"doi\":\"10.1016/j.ejrh.2025.102738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>San Diego County (California, USA), with its complex topography and coastal climate variability, requires high-resolution precipitation data to support hydrological modeling and climate adaptation planning. However, the coarse spatial resolution of Global Climate Models (GCMs) limits their applicability in such a diverse and hydrologically sensitive region.</div></div><div><h3>Study focus</h3><div>This study introduces a two-stage hybrid statistical downscaling framework that combines Transformer-based deep learning with traditional machine learning for localized precipitation prediction. The goal is to downscale coarse-resolution CMIP5 precipitation data (2° × 2.5°, 3-h intervals) to a finer 10 km × 10 km grid appropriate for regional hydrological applications. The first stage employs HydroFusionNet, a Transformer-based classifier, to detect rainfall occurrence using spatial atmospheric predictors, thereby filtering out non-rain periods and improving computational efficiency. The second stage applies two regression models: a Random Forest with linear bias adjustment and PrecipNet, a Transformer-based model.</div></div><div><h3>New hydrological insights for the region</h3><div>PrecipNet achieved a Mean Absolute Error (MAE) of 1.24 mm, Root Mean Square Error (RMSE) of 1.62 mm, and R² of 0.94, outperforming the Random Forest baseline in accuracy and spatial generalization. HydroFusionNet demonstrated 92.75 % classification accuracy, enhancing rainfall detection. The framework reduces false positives, captures complex rainfall dynamics, and provides context-aware uncertainty estimation—offering a scalable, hydrologically meaningful tool for regional climate impact assessments and water resource decision-making in topographically complex areas like San Diego County.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"62 \",\"pages\":\"Article 102738\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581825005671\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825005671","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

研究区域圣地亚哥县(美国加利福尼亚州)具有复杂的地形和沿海气候变率,需要高分辨率降水数据来支持水文建模和气候适应规划。然而,全球气候模式(GCMs)的空间分辨率较低,限制了其在这样一个多样性和水文敏感地区的适用性。本研究介绍了一个两阶段混合统计降尺度框架,该框架将基于transformer的深度学习与传统机器学习相结合,用于局部降水预测。目标是将粗分辨率CMIP5降水数据(2°× 2.5°,3小时间隔)降至适合区域水文应用的更精细的10 km × 10 km网格。第一阶段采用基于transformer的分类器HydroFusionNet,利用空间大气预测来检测降雨情况,从而过滤掉非降雨期,提高计算效率。第二阶段应用两个回归模型:一个线性偏差调整的随机森林和一个基于transformer的模型。区域降水网的平均绝对误差(MAE)为1.24 mm,均方根误差(RMSE)为1.62 mm, R²为0.94,在精度和空间推广方面优于随机森林基线。HydroFusionNet的分类准确率为92.75 %,增强了降雨检测。该框架减少了误报,捕获了复杂的降雨动态,并提供了上下文感知的不确定性估计,为圣地亚哥县等地形复杂地区的区域气候影响评估和水资源决策提供了一个可扩展的、有水文意义的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PrecipNet: A transformer-based downscaling framework for improved precipitation prediction in San Diego County

Study region

San Diego County (California, USA), with its complex topography and coastal climate variability, requires high-resolution precipitation data to support hydrological modeling and climate adaptation planning. However, the coarse spatial resolution of Global Climate Models (GCMs) limits their applicability in such a diverse and hydrologically sensitive region.

Study focus

This study introduces a two-stage hybrid statistical downscaling framework that combines Transformer-based deep learning with traditional machine learning for localized precipitation prediction. The goal is to downscale coarse-resolution CMIP5 precipitation data (2° × 2.5°, 3-h intervals) to a finer 10 km × 10 km grid appropriate for regional hydrological applications. The first stage employs HydroFusionNet, a Transformer-based classifier, to detect rainfall occurrence using spatial atmospheric predictors, thereby filtering out non-rain periods and improving computational efficiency. The second stage applies two regression models: a Random Forest with linear bias adjustment and PrecipNet, a Transformer-based model.

New hydrological insights for the region

PrecipNet achieved a Mean Absolute Error (MAE) of 1.24 mm, Root Mean Square Error (RMSE) of 1.62 mm, and R² of 0.94, outperforming the Random Forest baseline in accuracy and spatial generalization. HydroFusionNet demonstrated 92.75 % classification accuracy, enhancing rainfall detection. The framework reduces false positives, captures complex rainfall dynamics, and provides context-aware uncertainty estimation—offering a scalable, hydrologically meaningful tool for regional climate impact assessments and water resource decision-making in topographically complex areas like San Diego County.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信