{"title":"伊朗乌尔米亚高盐湖的分层与混合动力学","authors":"Peygham Ghaffari , Jafar Azizpour , Evgeniy Yakushev , Hamid A.K. Lahijani","doi":"10.1016/j.ejrh.2025.102697","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region:</h3><div>Lake Urmia, northwestern Iran</div></div><div><h3>Study focus:</h3><div>This study investigates the stratification and vertical mixing dynamics of Lake Urmia, a transboundary hypersaline lake under critical ecological stress. Using multi-year, high-resolution in-situ temperature and salinity measurements (2016–2019), we characterize seasonal mixing patterns and quantify the relative contributions of salinity and temperature to vertical water column stability. A lake-specific density formulation and thermal energy estimates are applied to assess buoyancy structure and overturn dynamics across contrasting seasonal phases.</div></div><div><h3>New hydrogeological insights from the region:</h3><div>Lake Urmia exhibits a dual-phase mixing regime, polymictic during the warm season with recurrent full-depth mixing, and inverse meromictic during the cold season due to salinity-enhanced density stratification. Salinity is shown to be the dominant stabilizing factor, while temperature plays a supporting role, primarily as a long-term tracer. The lake is classified as <em>Hyperhalimictic</em>, where mixing is governed by salinity rather than classical thermal stratification. A seasonal salinity pump mechanism is identified—winter brine rejection deepens stratification, while summer halite re-dissolution erodes it. Thermal inertia in lakebed sediments contributes to persistent cold-phase stratification. Findings indicate a trend toward increasing vertical decoupling, reduced overturning, and elevated risk of ecological stress. These insights support improved understanding of hypersaline lake behavior and can guide monitoring and resilience strategies in similar terminal lakes worldwide.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"61 ","pages":"Article 102697"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stratification and mixing dynamics of hypersaline Lake Urmia (Iran)\",\"authors\":\"Peygham Ghaffari , Jafar Azizpour , Evgeniy Yakushev , Hamid A.K. Lahijani\",\"doi\":\"10.1016/j.ejrh.2025.102697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region:</h3><div>Lake Urmia, northwestern Iran</div></div><div><h3>Study focus:</h3><div>This study investigates the stratification and vertical mixing dynamics of Lake Urmia, a transboundary hypersaline lake under critical ecological stress. Using multi-year, high-resolution in-situ temperature and salinity measurements (2016–2019), we characterize seasonal mixing patterns and quantify the relative contributions of salinity and temperature to vertical water column stability. A lake-specific density formulation and thermal energy estimates are applied to assess buoyancy structure and overturn dynamics across contrasting seasonal phases.</div></div><div><h3>New hydrogeological insights from the region:</h3><div>Lake Urmia exhibits a dual-phase mixing regime, polymictic during the warm season with recurrent full-depth mixing, and inverse meromictic during the cold season due to salinity-enhanced density stratification. Salinity is shown to be the dominant stabilizing factor, while temperature plays a supporting role, primarily as a long-term tracer. The lake is classified as <em>Hyperhalimictic</em>, where mixing is governed by salinity rather than classical thermal stratification. A seasonal salinity pump mechanism is identified—winter brine rejection deepens stratification, while summer halite re-dissolution erodes it. Thermal inertia in lakebed sediments contributes to persistent cold-phase stratification. Findings indicate a trend toward increasing vertical decoupling, reduced overturning, and elevated risk of ecological stress. These insights support improved understanding of hypersaline lake behavior and can guide monitoring and resilience strategies in similar terminal lakes worldwide.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"61 \",\"pages\":\"Article 102697\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581825005269\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825005269","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Stratification and mixing dynamics of hypersaline Lake Urmia (Iran)
Study region:
Lake Urmia, northwestern Iran
Study focus:
This study investigates the stratification and vertical mixing dynamics of Lake Urmia, a transboundary hypersaline lake under critical ecological stress. Using multi-year, high-resolution in-situ temperature and salinity measurements (2016–2019), we characterize seasonal mixing patterns and quantify the relative contributions of salinity and temperature to vertical water column stability. A lake-specific density formulation and thermal energy estimates are applied to assess buoyancy structure and overturn dynamics across contrasting seasonal phases.
New hydrogeological insights from the region:
Lake Urmia exhibits a dual-phase mixing regime, polymictic during the warm season with recurrent full-depth mixing, and inverse meromictic during the cold season due to salinity-enhanced density stratification. Salinity is shown to be the dominant stabilizing factor, while temperature plays a supporting role, primarily as a long-term tracer. The lake is classified as Hyperhalimictic, where mixing is governed by salinity rather than classical thermal stratification. A seasonal salinity pump mechanism is identified—winter brine rejection deepens stratification, while summer halite re-dissolution erodes it. Thermal inertia in lakebed sediments contributes to persistent cold-phase stratification. Findings indicate a trend toward increasing vertical decoupling, reduced overturning, and elevated risk of ecological stress. These insights support improved understanding of hypersaline lake behavior and can guide monitoring and resilience strategies in similar terminal lakes worldwide.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.