Soil最新文献

筛选
英文 中文
The clay mineralogy rather that the clay content determines radiocaesium adsorption in soils 粘土矿物学而不是粘土含量决定土壤对放射性铯的吸附
IF 6.8 2区 农林科学
Soil Pub Date : 2024-12-03 DOI: 10.5194/egusphere-2024-3585
Margot Vanheukelom, Nina Haenen, Talal Almahayni, Lieve Sweeck, Nancy Weyns, May Van Hees, Erik Smolders
{"title":"The clay mineralogy rather that the clay content determines radiocaesium adsorption in soils","authors":"Margot Vanheukelom, Nina Haenen, Talal Almahayni, Lieve Sweeck, Nancy Weyns, May Van Hees, Erik Smolders","doi":"10.5194/egusphere-2024-3585","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3585","url":null,"abstract":"<strong>Abstract.</strong> The transfer of radiocaesium (<sup>137</sup>Cs) from soil to crops is the main long-term radiation risk after nuclear accidents. The prevailing concept is that <sup>137</sup>Cs sorption in soil, and hence its bioavailability, is controlled by soil clay content (0–2 µm). This study tested this assumption using 24 soils collected worldwide. The Radiocaesium Interception Potential (RIP), i.e., <sup>137</sup>Cs adsorption, was measured for the bulk soils and for their clay and silt fractions. The RIP varied by factor 438 among soils and was <em>unrelated</em> to its clay content (<em>p</em> &gt;0.05). The RIP in the clay fractions was lowest for young volcanic soils with allophane and mica, and for highly weathered tropical soils with kaolinite. In contrast, about two order of magnitude higher RIP values were found in intermediate-weathered temperate soils dominated by illite. Soil RIP was, hence, related to soil illite content (R<sup>2</sup> = 0.50; <em>p</em> &lt;0.001). Significant fraction of soil RIP originated from clay minerals embedded in the silt fraction. The sum of RIP in clay and silt fractions overestimated the soil RIP by, on average, factor of 2, indicating that isolation of clay opens selective <sup>137</sup>Cs sorption sites inaccessible in intact soils. Soil mineralogy, not just clay content, governs soil RIP. The validity of existing <sup>137</sup>Cs bioavailability models require recalibration for its use on a global scale.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"37 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Missing the input: The underrepresentation of plant physiology in global soil carbon research 缺失输入:植物生理学在全球土壤碳研究中的代表性不足
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-28 DOI: 10.5194/egusphere-2024-3644
Sajjad Raza, Hannah V. Cooper, Nicholas T. Girkin, Matthew S. Kent, Malcolm J. Bennett, Sacha J. Mooney, Tino Colombi
{"title":"Missing the input: The underrepresentation of plant physiology in global soil carbon research","authors":"Sajjad Raza, Hannah V. Cooper, Nicholas T. Girkin, Matthew S. Kent, Malcolm J. Bennett, Sacha J. Mooney, Tino Colombi","doi":"10.5194/egusphere-2024-3644","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3644","url":null,"abstract":"<strong>Abstract.</strong> Plant processes regulating the quantity and quality of soil organic carbon inputs such as photosynthesis, above- and belowground plant growth, and root exudation are integral to our understanding of soil carbon dynamics. However, based on a bibliometric analysis including almost 50 000 scientific papers, we found that plant physiology has been severely underrepresented in global soil organic carbon research. Less than 10 % of peer-reviewed soil organic carbon research published in the last century addressed plant physiological processes relevant to soil carbon inputs. Similarly, plant physiology was overlooked by the overwhelming majority (&gt;90 %) of peer-reviewed literature investigating linkages between soil organic carbon, climate change, and land use and management. These findings highlight that our understanding of soil carbon dynamics and hence the carbon sequestration potential of terrestrial ecosystems is largely built on research that neglects the fundamental processes underlying organic carbon inputs. We advocate that the active engagement of plant scientists in soil carbon research is imperative to shed light on this blind spot. Long-term interdisciplinary research will be essential to develop a comprehensive perspective on soil carbon dynamics and to inform effective policies that support soil carbon sequestration.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"13 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of crop type on the greenhouse gas (GHG) emissions of a rewetted cultivated peatland 作物类型对复湿耕作泥炭地温室气体(GHG)排放的影响
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-27 DOI: 10.5194/soil-10-827-2024
Kristiina Lång, Henri Honkanen, Jaakko Heikkinen, Sanna Saarnio, Tuula Larmola, Hanna Kekkonen
{"title":"Impact of crop type on the greenhouse gas (GHG) emissions of a rewetted cultivated peatland","authors":"Kristiina Lång, Henri Honkanen, Jaakko Heikkinen, Sanna Saarnio, Tuula Larmola, Hanna Kekkonen","doi":"10.5194/soil-10-827-2024","DOIUrl":"https://doi.org/10.5194/soil-10-827-2024","url":null,"abstract":"Abstract. Raising the water table is an effective way to abate greenhouse gas emissions from cultivated peat soils. We experimented a gradual water table rise at a highly degraded agricultural peat soil site with plots of willow, forage and mixed vegetation (set-aside) in southern Finland. We measured the emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) for 4 years. The mean annual groundwater table depth was about 54, 40, 40 and 30 cm in 2019–2022, respectively. The results indicated that a 10 cm rise in the water table depth was able to slow down annual CO2 emissions from soil respiration by 0.87 Mg CO2-C ha−1. CH4 fluxes changed from uptake to emissions with a rise in the water table depth, and the maximum mean annual emission rate was 11 kg CH4-C ha−1. Nitrous oxide emissions ranged from 2 to 33 kg N2O-N ha−1 yr−1; they were high in bare soil at the beginning of the experiment but decreased towards the end of the experiment. Short rotation cropping of willow reached net sequestration of carbon before harvest, but all treatments and years showed a net loss of carbon based on the net ecosystem carbon balance. Overall, the short rotation coppice of willow had the most favourable carbon and greenhouse gas balance over the years (10 Mg CO2 eq. on average over 4 years). The total greenhouse gas balance of the forage and set-aside treatments did not go under 27 Mg CO2 eq. ha−1 yr−1, highlighting the challenge in curbing peat decomposition in highly degraded cultivated peatlands.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"16 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium is associated with specific soil organic carbon decomposition products 钙与特定的土壤有机碳分解产物有关
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-27 DOI: 10.5194/egusphere-2024-3343
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, Peter S. Nico
{"title":"Calcium is associated with specific soil organic carbon decomposition products","authors":"Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, Peter S. Nico","doi":"10.5194/egusphere-2024-3343","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3343","url":null,"abstract":"<strong>Abstract.</strong> Calcium (Ca) may contribute to the preservation of soil organic carbon (SOC) in more ecosystems than previously thought. Here we provide evidence that Ca is co-located with SOC compounds that are enriched in aromatic and phenolic groups, across different acidic soil-types and locations with different ecosystem properties. In turn, this co-localised fraction of Ca-SOC is removed through cation-exchange, and the association is then only re-established during decomposition in the presence of Ca (Ca addition incubation). Thereby highlighting a causative link between decomposition and the co-location of Ca with a characteristic fraction of SOC. Incorporating this mechanism into conceptual and numerical models can improve our understanding, predictions, and management of carbon dynamics in natural and managed soils, and account for their response to Ca-rich amendments.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"129 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portable X-Ray Fluorescence as a Tool for Urban Soil Contamination Analysis: Accuracy, Precision, and Practicality 作为城市土壤污染分析工具的便携式 X 射线荧光技术:准确性、精确性和实用性
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-21 DOI: 10.5194/egusphere-2024-3101
Eriell Jenkins, John Galbraith, Anna Paltseva
{"title":"Portable X-Ray Fluorescence as a Tool for Urban Soil Contamination Analysis: Accuracy, Precision, and Practicality","authors":"Eriell Jenkins, John Galbraith, Anna Paltseva","doi":"10.5194/egusphere-2024-3101","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3101","url":null,"abstract":"<strong>Abstract.</strong> Urban agriculture has become an essential component of urban sustainability, but it often faces the challenge of soil contamination with heavy metal(loid)s like lead (Pb), arsenic (As), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn). Traditional laboratory methods for detecting these contaminants, such as atomic absorption spectroscopy (AAS) and inductively coupled plasma techniques (ICP-MS, ICP-OES, ICP-AES), are accurate but can be costly, time-consuming, and require extensive sample preparation. Portable X-ray fluorescence (PXRF) presents a promising alternative, offering rapid, in situ analysis with minimal sample preparation. The study reviews literature on PXRF analyzers to determine their accuracy and precision in analyzing heavy metal(loid)s in urban soils, with the goal of optimizing sampling, reducing laboratory costs and time, and identifying priority metal contamination hotspots. A literature review was conducted using Web of Science and Google Scholar, focusing on studies that validated PXRF measurements with alternate laboratory methods or certified reference materials (CRMs). This study reviews 67 publications to evaluate the accuracy and precision of PXRF in analyzing heavy metal(loid)s in urban soils. The review covers instrument types, calibration methods, testing conditions, and sample preparation techniques. Results show that, when properly calibrated, particularly with CRMs, PXRF achieves reliable accuracy. <em>Ex situ</em> measurements tend to be more precise due to controlled conditions, although <em>in situ</em> measurements offer practical advantages in urban settings. Portable XRF emerges as a viable method for assessing urban soil contamination, balancing accuracy and practicality. Future research should focus on optimizing sample preparation and calibration to further enhance PXRF reliability in urban environments. This review highlights PXRF’s potential to streamline soil testing, reduce costs, and identify contamination hotspots, contributing to safer urban agriculture and more precise soil survey and conservation efforts.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"57 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica) 詹姆斯罗斯岛(南极洲)海拔梯度上土壤有机物的相互作用
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-19 DOI: 10.5194/soil-10-813-2024
Vítězslav Vlček, David Juřička, Martin Valtera, Helena Dvořáčková, Vojtěch Štulc, Michaela Bednaříková, Jana Šimečková, Peter Váczi, Miroslav Pohanka, Pavel Kapler, Miloš Barták, Vojtěch Enev
{"title":"Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica)","authors":"Vítězslav Vlček, David Juřička, Martin Valtera, Helena Dvořáčková, Vojtěch Štulc, Michaela Bednaříková, Jana Šimečková, Peter Váczi, Miroslav Pohanka, Pavel Kapler, Miloš Barták, Vojtěch Enev","doi":"10.5194/soil-10-813-2024","DOIUrl":"https://doi.org/10.5194/soil-10-813-2024","url":null,"abstract":"Abstract. Around half of the Earth's soil organic carbon (SOC) is presently stored in the Northern Hemisphere permafrost region. In polar permafrost regions, low temperatures particularly inhibit both the production and biodegradation of organic matter. Under such conditions, abiotic factors such as mesoclimate, pedogenic substrate or altitude are thought to be more important for soil development than biological factors. In Antarctica, biological factors are generally underestimated in soil development due to the rare occurrence of higher plants and the short time since deglaciation. In this study, we aim to assess the relationship between SOC and other soil properties related to the pedogenic factors or properties. Nine plots were investigated along the altitudinal gradient from 10 to 320 m in the deglaciated area of James Ross Island (Ulu Peninsula) using a parallel tea-bag decomposition experiment. SOC contents showed a positive correlation with the content of easily extractable glomalin-related soil protein (EE-GRSP; Spearman r=0.733, P=0.031) and the soil buffering capacity (expressed as ΔpH; Spearman r=0.817, P=0.011). The soil-available P was negatively correlated with altitude (Spearman r=-0.711, P=0.032), and the exchangeable Mg was negatively correlated with the rock fragment content (Spearman r=-0.683, P=0.050). No correlation was found between the available mineral nutrients (P, K, Ca and Mg) and SOC or GRSP. This may be a consequence of the inhibition of biologically mediated nutrient cycling in the soil. Therefore, the main factor influencing nutrient availability in these soils does not seem to the biotic environment; rather, the main impact appears to stem from the abiotic environment influencing the mesoclimate (altitude) or the level of weathering (rock content). Incubation in tea bags for 45 d resulted in the consumption and translocation of more labile polyphenolic and water-extractable organic matter, along with changes in the C content (increase of up to +0.53 % or decrease of up to −1.31 % C) and a decrease in the C:N ratio (from 12.5 to 7.1–10.2), probably due to microbial respiration and an increase in the abundance of nitrogen-binding microorganisms. Our findings suggest that one of the main variables influencing the SOC/GRSP content is not the altitude or coarse-fraction content (for which a correlation with SOC/GRSP was not found); rather, we suspect effects from other factors that are difficult to quantify, such as the availability of liquid water.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"7 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the complementarity of thermal and physical soil organic carbon fractions 研究土壤有机碳的热组分和物理组分的互补性
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-12 DOI: 10.5194/soil-10-795-2024
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, Pierre Barré
{"title":"Investigating the complementarity of thermal and physical soil organic carbon fractions","authors":"Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, Pierre Barré","doi":"10.5194/soil-10-795-2024","DOIUrl":"https://doi.org/10.5194/soil-10-795-2024","url":null,"abstract":"Abstract. Partitioning soil organic carbon (SOC) in fractions with different biogeochemical stability is useful to better understand and predict SOC dynamics and provide information related to soil health. Multiple SOC partition schemes exist, but few of them can be implemented on large sample sets and therefore be considered relevant options for soil monitoring. The well-established particulate organic carbon (POC) vs. mineral-associated organic carbon (MAOC) physical fractionation scheme is one of them. Introduced more recently, Rock-Eval® thermal analysis coupled with the PARTYSOC machine learning model can also fractionate SOC into active (Ca) and stable SOC (Cs). A debate is emerging as to which of these methods should be recommended for soil monitoring. To investigate the complementarity or redundancy of these two fractionation schemes, we compared the quantity and environmental drivers of SOC fractions obtained on an unprecedented dataset from mainland France. About 2000 topsoil samples were recovered all over the country, presenting contrasting land cover and pedoclimatic characteristics, and analysed. We found that the environmental drivers of the fractions were clearly different, the more stable MAOC and Cs fractions being mainly driven by soil characteristics, whereas land cover and climate had a greater influence on more labile POC and Ca fractions. The stable and labile SOC fractions provided by the two methods strongly differed in quantity (MAOC/Cs=1.88 ± 0.46 and POC/Ca=0.36 ± 0.17; n=843) and drivers, suggesting that they correspond to fractions with different biogeochemical stability. We argue that, at this stage, both methods can be seen as complementary and potentially relevant for soil monitoring. As future developments, we recommend comparing how they relate to indicators of soil health such as nutrient availability or soil structural stability and how their measurements can improve the accuracy of SOC dynamics models.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"4 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming barriers in long-term, continuous monitoring of soil CO2 flux: A low-cost sensor system 克服长期连续监测土壤二氧化碳通量的障碍:低成本传感器系统
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-07 DOI: 10.5194/egusphere-2024-3156
Thi Thuc Nguyen, Nadav Bekin, Ariel Altman, Martin Maier, Nurit Agam, Elad Levintal
{"title":"Overcoming barriers in long-term, continuous monitoring of soil CO2 flux: A low-cost sensor system","authors":"Thi Thuc Nguyen, Nadav Bekin, Ariel Altman, Martin Maier, Nurit Agam, Elad Levintal","doi":"10.5194/egusphere-2024-3156","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3156","url":null,"abstract":"<strong>Abstract.</strong> Soil CO<sub>2</sub> flux (<em>F<sub>s</sub></em>) is a carbon cycling metric crucial for assessing ecosystem carbon budgets and global warming. However, global <em>F<sub>s</sub></em> datasets often suffer from low temporal-spatial resolution, as well as from spatial bias. <em>F<sub>s</sub></em> observations are severely deficient in tundra and dryland ecosystems due to financial and logistical constraints of current methods for <em>F<sub>s</sub></em> quantification. In this study, we introduce a novel, low-cost sensor system (LC-SS) for long-term, continuous monitoring of soil CO<sub>2</sub> concentration and flux. The LC-SS, built from affordable, open-source hardware and software, offers a cost-effective solution (~USD700), accessible to low-budget users, and opens the scope for research with a large number of sensor system replications. The LC-SS was tested over ~6 months in arid soil conditions, where fluxes are small, and accuracy is critical. CO<sub>2</sub> concentration and soil temperature were measured at 10-min intervals at depths of 5 and 10 cm. The LC-SS demonstrated high stability and minimal maintenance requirements during the tested period. Both diurnal and seasonal soil CO<sub>2</sub> concentration variabilities were observed, highlighting the system's capability of continuous, long-term, in-situ monitoring of soil CO<sub>2</sub> concentration. In addition, <em>F<sub>s</sub></em> was calculated using the measured CO<sub>2</sub> concentration via the gradient method and validated with <em>F<sub>s</sub></em> measured by the flux chamber method using the well-accepted LI-COR gas analyzer system. Gradient method <em>F<sub>s </sub></em>was in good agreement with flux chamber <em>F<sub>s</sub></em>, highlighting the potential for alternative or concurrent use of the LC-SS with current methods for <em>F<sub>s</sub></em> estimation. Leveraging the accuracy and cost-effectiveness of the LC-SS (below 10 % of automated gas analyzer system cost), strategic implementation of LC-SSs could be a promising means to effectively increase the number of measurements, spatially and temporally, ultimately aiding in bridging the gap between global <em>F<sub>s</sub></em> uncertainties and current measurement limitations.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"25 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the link between cation exchange capacity and magnetic susceptibility 探索阳离子交换容量与磁感应强度之间的联系
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-05 DOI: 10.5194/egusphere-2024-3306
Gaston Matias Mendoza Veirana, Hana Grison, Jeroen Verhegge, Wim Cornelis, Philippe De Smedt
{"title":"Exploring the link between cation exchange capacity and magnetic susceptibility","authors":"Gaston Matias Mendoza Veirana, Hana Grison, Jeroen Verhegge, Wim Cornelis, Philippe De Smedt","doi":"10.5194/egusphere-2024-3306","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3306","url":null,"abstract":"<strong>Abstract.</strong> This study explores the relationship between soil magnetic susceptibility (𝜅) and cation exchange capacity (𝐶𝐸𝐶) across diverse European soils, aiming to enhance pedotransfer functions (PTFs) for soil 𝐶𝐸𝐶 using near-surface electromagnetic geophysics. We hypothesize that soil 𝜅, can improve the prediction of 𝐶𝐸𝐶 by reflecting the soil’s mineralogical composition, particularly in sandy soils. We collected data from 49 soil samples in vertical profiles across Belgium, the Netherlands, and Serbia, including 𝜅 in field conditions (𝜅<sup>∗</sup>), low and high frequency 𝜅 in the laboratory, in-site electrical conductivity (𝜎), iron content, soil texture, humus content, bulk density, water content, water pH, and 𝐶𝐸𝐶. We used these properties as features to develop univariable and multivariable (in pairs) polynomial regressions to predict 𝐶𝐸𝐶 for sandy and clayey soils. Results indicate that 𝜅<sup>∗</sup> significantly improves 𝐶𝐸𝐶 predictions in sandy soils, independent of clay content, with a combined 𝜅<sup>∗ </sup>- 𝜎 model achieving the highest predictive performance (<em>R</em><sup>2</sup> = 0.94). In contrast, laboratory-measured 𝜅 was less effective, likely due to sample disturbance. This study presents a novel 𝐶𝐸𝐶 PTF based on 𝜎 and 𝜅<sup>∗</sup>, offering a rapid, cost-effective method for estimating 𝐶𝐸𝐶 in field conditions. While our findings underscore the value of integrating geophysical measurements into soil characterization, further research is needed to refine the 𝜅- 𝐶𝐸𝐶 relationship and develop a more widely applicable model.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"36 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moderate N fertilizer reduction with straw return modulates cropland functions and microbial traits in a meadow soil 秸秆还田适度减少氮肥用量可调节草甸土壤的耕地功能和微生物性状
IF 6.8 2区 农林科学
Soil Pub Date : 2024-11-05 DOI: 10.5194/soil-10-779-2024
Yan Duan, Minghui Cao, Wenling Zhong, Yuming Wang, Zheng Ni, Mengxia Zhang, Jiangye Li, Yumei Li, Xianghai Meng, Lifang Wu
{"title":"Moderate N fertilizer reduction with straw return modulates cropland functions and microbial traits in a meadow soil","authors":"Yan Duan, Minghui Cao, Wenling Zhong, Yuming Wang, Zheng Ni, Mengxia Zhang, Jiangye Li, Yumei Li, Xianghai Meng, Lifang Wu","doi":"10.5194/soil-10-779-2024","DOIUrl":"https://doi.org/10.5194/soil-10-779-2024","url":null,"abstract":"Abstract. Nitrogen (N) fertilization has received worldwide attention due to its benefits with regard to soil fertility and productivity, but excess N application also causes an array of ecosystem degenerations, such as greenhouse gas emissions. Generally, soil microorganisms are considered to be involved in upholding a variety of soil functions. However, the linkages between soil cropland properties and microbial traits under different N fertilizer application rates remain uncertain. To address this, a 4-year in situ field experiment was conducted in a meadow soil from the Northeast China Plain after straw return with the following treatments combined with regular phosphorus (P) and potassium (K) fertilization: (i) regular N fertilizer (N + PK), (ii) 25 % N fertilizer reduction (0.75N + PK), (iii) 50 % N fertilizer reduction (0.5N + PK), and (IV) no N fertilizer (PK). Cropland properties and microbial traits responded distinctly to the different N fertilizer rates. Treatment 0.75N + PK had overall positive effects on soil fertility, productivity, straw decomposition, and microbial abundance and functioning and alleviated greenhouse effects. Specifically, no significant difference was observed in soil organic carbon (SOC), total N, P content, straw C, N release amounts, microbial biomass C, N content, and cellulase and N-acetyl-D-glucosaminidase activities, which were all significantly higher than in 0.5N + PK and PK. Greenhouse gas emissions was reduced with the decreasing N input levels. Moreover, the highest straw biomass and yield were measured in 0.75N + PK, which were significantly higher than in 0.5N + PK and PK. Meanwhile, 0.75N + PK up-regulated aboveground biomass and soil C:N and thus increased the abundance of genes encoding cellulose-degrading enzymes, which may imply the potential ability of C and N turnover. In addition, most observed changes in cropland properties were strongly associated with microbial modules and keystone taxa. The Lasiosphaeriaceae within the module-1 community showed significant positive correlations with straw degradation rate and C and N release, while the Terrimonas within the module-3 community showed a significant positive correlation with production, which was conducive to soil multifunctionality. Therefore, our results suggest that straw return with 25 % chemical N fertilizer reduction is optimal for achieving soil functions. This study highlights the importance of abiotic and biotic factors in soil health and supports green agricultural development by optimizing N fertilizer rates in meadow soil after straw return.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"17 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信