Soil最新文献

筛选
英文 中文
Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach 通过局部归因法洞察基于机器学习的数字土壤制图的预测不确定性
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-21 DOI: 10.5194/egusphere-2024-323
Jeremy Rohmer, Stephane Belbeze, Dominique Guyonnet
{"title":"Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach","authors":"Jeremy Rohmer, Stephane Belbeze, Dominique Guyonnet","doi":"10.5194/egusphere-2024-323","DOIUrl":"https://doi.org/10.5194/egusphere-2024-323","url":null,"abstract":"<strong>Abstract.</strong> Machine learning (ML) models have become key ingredients for digital soil mapping. To improve the interpretability of their prediction, diagnostic tools have been developed like the widely used local attribution approach known as ‘SHAP’ (SHapley Additive exPlanation). However, the analysis of the prediction is only one part of the problem and there is an interest in getting deeper insights into the drivers of the prediction uncertainty as well, i.e. to explain why the ML model is confident, given the set of chosen covariates’ values (in addition to why the ML model delivered some particular results). We show in this study how to apply SHAP to the local prediction uncertainty estimates for a case of urban soil pollution, namely the presence of petroleum hydrocarbon in soil at Toulouse (France), which poses a health risk via vapour intrusion into buildings, direct soil ingestion or groundwater contamination. To alleviate the computational burden posed by the multiple covariates (typically &gt;10) and by the large number of grid points on the map (typically over several 10,000s), we propose to rely on an approach that combines screening analysis (to filter out non-influential covariates) and grouping of dependent covariates by means of generic kernel-based dependence measures. Our results show evidence that the drivers of the prediction best estimate are not necessarily the ones that drive the confidence in these predictions, hence justifying that decisions regarding data collection and covariates’ characterisation as well as communication of the results should be made accordingly.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"11 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mulch application as the overarching factor explaining increase in soil organic carbon stocks under conservation agriculture in two 8-year-old experiments in Zimbabwe 在津巴布韦进行的两项为期 8 年的试验中,覆盖物的应用是解释保护性农业下土壤有机碳储量增加的首要因素
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-20 DOI: 10.5194/soil-10-151-2024
Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, Rémi Cardinael
{"title":"Mulch application as the overarching factor explaining increase in soil organic carbon stocks under conservation agriculture in two 8-year-old experiments in Zimbabwe","authors":"Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, Rémi Cardinael","doi":"10.5194/soil-10-151-2024","DOIUrl":"https://doi.org/10.5194/soil-10-151-2024","url":null,"abstract":"Abstract. Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our understanding of the impact of CA and its respective three principles on top- and subsoil organic carbon stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. This study was conducted at two long-term experimental sites established in Zimbabwe in 2013. The soil types were abruptic Lixisols at Domboshava Training Centre (DTC) and xanthic Ferralsol at the University of Zimbabwe farm (UZF). The following six treatments, which were replicated four times, were investigated: conventional tillage (CT), conventional tillage with rotation (CTR), no tillage (NT), no tillage with mulch (NTM), no tillage with rotation (NTR), and no tillage with mulch and rotation (NTMR). Maize (Zea mays L.) was the main crop, and treatments with rotation included cowpea (Vigna unguiculata L. Walp.). The soil organic carbon (SOC) concentration and soil bulk density were determined for samples taken from depths of 0–5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–75 and 75–100 cm. Cumulative organic inputs to the soil were also estimated for all treatments. SOC stocks at equivalent soil mass were significantly (p<0.05) higher in the NTM, NTR and NTMR treatments compared with the NT and CT treatments in the top 5 cm and top 10 cm layers at UZF, while SOC stocks were only significantly higher in the NTM and NTMR treatments compared with the NT and CT treatments in the top 5 cm at DTC. NT alone had a slightly negative impact on the top SOC stocks. Cumulative SOC stocks were not significantly different between treatments when considering the whole 100 cm soil profile. Our results show the overarching role of crop residue mulching in CA cropping systems with respect to enhancing SOC stocks but also that this effect is limited to the topsoil. The highest cumulative organic carbon inputs to the soil were observed in NTM treatments at the two sites, and this could probably explain the positive effect on SOC stocks. Moreover, our results show that the combination of at least two CA principles including mulch is required to increase SOC stocks in these low-nitrogen-input cropping systems.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"8 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions 覆盖作物可改善土壤结构,改变有机碳在大颗粒组分中的分布
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-15 DOI: 10.5194/soil-10-139-2024
Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, Georg Guggenberger
{"title":"Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions","authors":"Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, Georg Guggenberger","doi":"10.5194/soil-10-139-2024","DOIUrl":"https://doi.org/10.5194/soil-10-139-2024","url":null,"abstract":"Abstract. Soil structure is sensitive to intensive soil management. It can be ameliorated by a reduction in soil cultivation and stimulation of plant and microbial mediators for aggregate formation, with the latter being a prerequisite and measure for soil quality. Cover crops (CCs) are part of an integrated approach to stabilize or improve soil quality. Thereby, the incorporation of diverse CC mixtures is hypothesized to increase the positive effects of CC applications. This study entailed an investigation of the legacy effect of CCs on soil aggregates after three crop rotations in the second main crop (winter wheat) after the last CC treatment. Four CCs (mustard, phacelia, clover, and oat) cultivated in pure stands and with a fallow treatment were compared to a mixture of the four CC species (Mix4) and a highly diverse 12-plant-species mixture (Mix12) in a long-term field experiment in Germany. The organic carbon (OC) distribution within macroaggregate fractions (16–8, 8–4, 4–2, 2–1, and <1 mm) and their aggregate stability were measured by dry- and wet-sieving methods, and the mean weight diameter (MWD) was calculated from water-stable aggregates. The results showed that, compared to the fallow, all CCs increased the MWD between 10 % and 19 % in soil under the following main crop. The average MWD increase over the fallow was slightly higher for CC mixtures (16 %) than for single CCs (12 %). Most of the OC (67.9 % on average) was stored in the <1 mm aggregate fraction, highest in the topsoil and decreasing with soil depth. The intermediate fractions (8–4 mm, 4–2 mm, 2–1 mm) stored 8.5 %, 10.5 %, and 11.0 % of the total OC, while 2.1 % was stored in the 16–8 mm fraction. Higher MWD improvement at the 20–30 cm depth also indicates additional benefits from a reduction in the cultivation depth. Structural equation modelling (SEM) suggests that single CCs were more likely to increase OC storage in small macroaggregates <1 mm, while CC mixtures were more likely to increase OC in the largest fraction (8–16 mm). Different individual CC species or mixtures exhibited varying involvement in the formation of different aggregate fractions. We provide evidence that litter quality, root morphology, and rhizosphere input, which affect microbial mediators of aggregate formation, might be the main reasons for the observed differences between CC treatments. Cover crops are valuable multifunctional tools for sustainable soil management. Here, we showed that they contribute to structure amelioration in arable soils. Increasing the functional diversity of plant species in CC mixtures could be a strategy to further enhance the positive effects of CCs in agroecosystems.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"174 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity of source sediment fingerprinting to tracer selection methods 源沉积物指纹识别对示踪剂选择方法的敏感性
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-13 DOI: 10.5194/soil-10-109-2024
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, Olivier Evrard
{"title":"Sensitivity of source sediment fingerprinting to tracer selection methods","authors":"Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, Olivier Evrard","doi":"10.5194/soil-10-109-2024","DOIUrl":"https://doi.org/10.5194/soil-10-109-2024","url":null,"abstract":"Abstract. In a context of accelerated soil erosion and sediment supply to water bodies, sediment fingerprinting techniques have received an increasing interest in the last 2 decades. The selection of tracers is a particularly critical step for the subsequent accurate prediction of sediment source contributions. To select tracers, the most conventional approach is the three-step method, although, more recently, the consensus method has also been proposed as an alternative. The outputs of these two approaches were compared in terms of identification of conservative properties, tracer selection, modelled contributions and performance on a single dataset. As for the three-step method, several range test criteria were compared, along with the impact of the discriminant function analysis (DFA). The dataset was composed of tracer properties analysed in soil (three potential sources; n = 56) and sediment core samples (n = 32). Soil and sediment samples were sieved to 63 µm and analysed for organic matter, elemental geochemistry and diffuse visible spectrometry. Virtual mixtures (n = 138) with known source proportions were generated to assess model accuracy of each tracer selection method. The Bayesian un-mixing model MixSIAR was then used to predict source contributions on both virtual mixtures and actual sediments. The different methods tested in the current research can be distributed into three groups according to their sensitivity to the conservative behaviour of properties, which was found to be associated with different predicted source contribution tendencies along the sediment core. The methods selecting the largest number of tracers were associated with a dominant and constant contribution of forests to sediment. In contrast, the methods selecting the lowest number of tracers were associated with a dominant and constant contribution of cropland to sediment. Furthermore, the intermediate selection of tracers led to more balanced contributions of both cropland and forest to sediments. The prediction of the virtual mixtures allowed us to compute several evaluation metrics, which are generally used to support the evaluation of model accuracy for each tracer selection method. However, strong differences or the absence of correspondence were observed between the range of predicted contributions obtained for virtual mixtures and those values obtained for actual sediments. These divergences highlight the fact that evaluation metrics obtained for virtual mixtures may not be directly transferable to models run for actual samples and must be interpreted with caution to avoid over-interpretation or misinterpretation. These divergences may likely be attributed to the occurrence of a not (fully) conservative behaviour of potential tracer properties during erosion, transport and deposition processes, which could not be fully reproduced when generating the virtual mixtures with currently available methods. Future research should develop novel metrics to quantif","PeriodicalId":48610,"journal":{"name":"Soil","volume":"52 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trapnell's Upper Valley Soils of Zambia: the production of an integrated understanding of geomorphology, pedology, ecology and land use 特拉普内尔的《赞比亚上河谷土壤》:对地貌学、土壤学、生态学和土地利用的综合理解的产生
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-12 DOI: 10.5194/egusphere-2024-315
Nalumino L. Namwanyi, Maurice J. Hutton, Ikabongo Mukumbuta, Lydia M. Chabala, Clarence Chongo, Stalin Sichinga, R. Murray Lark
{"title":"Trapnell's Upper Valley Soils of Zambia: the production of an integrated understanding of geomorphology, pedology, ecology and land use","authors":"Nalumino L. Namwanyi, Maurice J. Hutton, Ikabongo Mukumbuta, Lydia M. Chabala, Clarence Chongo, Stalin Sichinga, R. Murray Lark","doi":"10.5194/egusphere-2024-315","DOIUrl":"https://doi.org/10.5194/egusphere-2024-315","url":null,"abstract":"<strong>Abstract.</strong> The Ecological Survey of Northern Rhodesia, undertaken in the 1930s under the leadership of Colin Trapnell, was a seminal exercise to relate soil, vegetation and agricultural practices through intensive field observation. In this article we examine early activities of the survey in the Upper Valley region around the Kafue Flats and the neighbouring plateau where Trapnell recognized how geomorphological processes of normal erosion gave rise to distinctive soils with associated vegetation communities and considerable potential for crop production. We consider how Trapnell's approach to field work gave him a particular insight into how soil conditions constrained agriculture in the Zambian environment, the adaptive value of traditional practices, and how these were developed as communities moved and responded to social, economic and environmental change. We argue that Trapnell's work was innovative, and that distinctions must be drawn between his understanding and what has been called the ecological theory of development. Close attention to Trapnell's experience could inform modern efforts to understand indigenous knowledge of African soils and their agricultural potential.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"24 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139733539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil carbon, nitrogen, and phosphorus storage in juniper–oak savanna: role of vegetation and geology 杜松-橡树稀树草原的土壤碳、氮和磷储存:植被和地质的作用
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-06 DOI: 10.5194/soil-10-93-2024
Che-Jen Hsiao, Pedro A. M. Leite, Ayumi Hyodo, Thomas W. Boutton
{"title":"Soil carbon, nitrogen, and phosphorus storage in juniper–oak savanna: role of vegetation and geology","authors":"Che-Jen Hsiao, Pedro A. M. Leite, Ayumi Hyodo, Thomas W. Boutton","doi":"10.5194/soil-10-93-2024","DOIUrl":"https://doi.org/10.5194/soil-10-93-2024","url":null,"abstract":"Abstract. Woody-plant encroachment into grasslands and savannas has been globally widespread during the past century, likely driven by interactions between grazing, fire suppression, rising atmospheric CO2, and climate change. In the southernmost US Great Plains, Ashe juniper and live oak have increased in abundance. To evaluate potential interactions between this vegetation change and the underlying soil parent material on ecosystem biogeochemistry, we quantified soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and δ13C of SOC in soils obtained from trenches passing through grassland, juniper, and oak patches on soils lying atop the respective Edwards and Buda limestone formations in central Texas. Soils on the Edwards formation are more shallow and have more rock outcropping than those on Buda. The δ13C values of SOC under grasslands was −19 ‰, whereas those under woody patches were −21 ‰ to −24 ‰, indicating that wooded areas were relatively recent components of the landscape. Compared with grasslands, areas now dominated by juniper or oak had elevated SOC, TN, and TP storage in soils lying atop Edwards limestone. In Buda soils, only oak patches had increased SOC, TN, and TP storage compared with grasslands. Woody encroachment effects on soil nutrients were higher in soils on the Edwards formation, perhaps because root and litter inputs were more concentrated in the relatively shallow layer of soil atop the Edwards bedrock. Our findings suggest that geological factors should be considered when predicting nutrient store responses in savannas following vegetation change. Given that woody encroachment is occurring globally, our results have important implications for the management and conservation of these ecosystems. The potential interactive effects between vegetation change and soil parent material on C, N, and P storage warrant attention in future studies aimed at understanding and modeling the global consequences of woody encroachment.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"86 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectomycorrhizal fungal network complexity determines soil multi-enzymatic activity 外生菌根真菌网络的复杂性决定了土壤的多酶活性
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-02 DOI: 10.5194/egusphere-2024-119
Jorge Prieto-Rubio, José Luis Garrido, Julio M. Alcántara, Concepción Azcón-Aguilar, Ana Rincón, Álvaro López-García
{"title":"Ectomycorrhizal fungal network complexity determines soil multi-enzymatic activity","authors":"Jorge Prieto-Rubio, José Luis Garrido, Julio M. Alcántara, Concepción Azcón-Aguilar, Ana Rincón, Álvaro López-García","doi":"10.5194/egusphere-2024-119","DOIUrl":"https://doi.org/10.5194/egusphere-2024-119","url":null,"abstract":"<strong>Abstract.</strong> Soil functioning is intrinsically related to the structure of associated biological communities. This link is barely understood under the multi-species context of soil microbial communities, which often requires complex analytical approaches to discern into structural and functional roles of microbial taxa inhabiting the soil. To investigate these ecological properties, we characterized the assembly and soil functioning contribution of ectomycorrhizal (ECM) fungal communities through co-occurrence network analysis. Co-occurrence networks were inferred from ECM root-tips of <em>Quercus</em> spp. and <em>Cistus albidus</em> on a regional scale, in Mediterranean mixed forests. Soil enzymatic activities related to carbon and nutrient cycling were measured, and soil functionality outcomes related to ECM fungal network structure were evaluated from community-to-taxon level. Network complexity relied on habitat characteristics and seasonality, and it was linked to different dominant ECM fungal linages across habitats. Soil enzymatic activities were habitat-dependent, driven by host plant identity and fungi with reduced structuring roles in the co-occurrence network (mainly within Thelephorales, Sebacinales, Pezizales). ECM fungal co-occurrence network structure and functioning were highly context-dependent pointing to divergent regional fungal species pools according to their niche preferences. As increased network complexity was not related to greater soil functionality, functional redundancy might be operating in Mediterranean forest soils. The revealed differentiation between structural and functional roles of ECM fungi adds new insights into the understanding of soil fungal community assembly and its functionality in ecosystems.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"8 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139660725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the complementarity of thermal and physical soil organic carbon fractions 研究土壤有机碳的热组分和物理组分的互补性
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-02 DOI: 10.5194/egusphere-2024-197
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel P. Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, Pierre Barré
{"title":"Investigating the complementarity of thermal and physical soil organic carbon fractions","authors":"Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel P. Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, Pierre Barré","doi":"10.5194/egusphere-2024-197","DOIUrl":"https://doi.org/10.5194/egusphere-2024-197","url":null,"abstract":"<strong>Abstract.</strong> Partitioning soil organic carbon (SOC) in fractions with different biogeochemical stability is useful to better understand and predict SOC dynamics, and provide information related to soil health. Multiple SOC partition schemes exist but few of them can be implemented on large sample sets and therefore be considered as relevant options for soil monitoring. The well-established particulate- (POC) <em>vs.</em> mineral-associated organic carbon (MAOC) physical fractionation scheme is one of them. Introduced more recently, Rock-Eval® thermal analysis coupled with the PARTY<sub>SOC</sub> machine-learning model can also fractionate SOC into active (C<sub>a</sub>) and stable SOC (C<sub>s</sub>). A debate is emerging as to which of these methods should be recommended for soil monitoring. To investigate the complementarity or redundancy of these two fractionation schemes, we compared the quantity and environmental drivers of SOC fractions obtained on an unprecedented dataset from mainland France. About 2,000 topsoil samples were recovered all over the country, presenting contrasting land covers and pedoclimatic characteristics, and analysed. We found that the environmental drivers of the fractions were clearly different, the more stable MAOC and C<sub>s</sub> fractions being mainly driven by soil characteristics, whereas land cover and climate had a greater influence on more labile POC and C<sub>a</sub> fractions. The stable and labile SOC fractions provided by the two methods strongly differed in quantity (MAOC/C<sub>s</sub> = 1.88 ± 0.46 and POC/C<sub>a</sub> = 0.36 ± 0.17; n = 843) and drivers, suggesting that they correspond to fractions with different biogeochemical stability. We argue that, at this stage, both methods can be seen as complementary and potentially relevant for soil monitoring. As future developments, we recommend comparing how they relate to indicators of soil health such as nutrient availability or soil structural stability, and how their measurements can improve the accuracy of SOC dynamics models.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"26 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139660740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic matters, but inorganic matters too: column examination of elevated mercury sorption on low organic matter aquifer material using concentrations and stable isotope ratios 有机物,但也有无机物:利用浓度和稳定同位素比对低有机物含水层材料上的高浓度汞吸附进行柱状检测
IF 6.8 2区 农林科学
Soil Pub Date : 2024-02-01 DOI: 10.5194/soil-10-77-2024
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, Harald Biester
{"title":"Organic matters, but inorganic matters too: column examination of elevated mercury sorption on low organic matter aquifer material using concentrations and stable isotope ratios","authors":"David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, Harald Biester","doi":"10.5194/soil-10-77-2024","DOIUrl":"https://doi.org/10.5194/soil-10-77-2024","url":null,"abstract":"Abstract. Sorption of mercury (Hg) in soils is suggested to be predominantly associated with organic matter (OM). However, there is a growing collection of research that suggests that clay minerals and Fe/Mn oxides are also important solid phases for the sorption of soluble Hg in soil–groundwater systems. We use a series of (60 mL syringe based) column experiments to examine sorption and subsequent desorption of HgCl2 solutions (experiment 1 (EXP1): 46.1 ± 1.1 mg L−1; experiment 2 (EXP2): 144 ± 6 mg L−1) in low-OM (0.16 ± 0.02 %) solid-phase aquifer materials. Analyses of total Hg concentrations, Hg speciation (i.e. pyrolytic thermal desorption (PTD)), and Hg stable isotopes are performed on both solid- and liquid-phase samples across sorption and desorption phases of the experiments. The sorption breakthrough curve best fitted a Freundlich model. Despite the very low-OM content, the Hg equilibrium sorptive capacity in these columns is very high: 1510 ± 100 and 2320 ± 60 mg kg−1 for EXP1 and EXP2, respectively, and it is similar to those determined for high-OM soils. Data from the experiments on mass-dependent Hg stable isotope fractionation data from these experiments (described by δ202Hg) support preferential sorption of lighter isotopes to the solid-phase materials with results indicating an isotopically heavier liquid phase and an isotopically lighter solid phase. Desorption fits exponential decay models, and 46 ± 6 % and 58 ± 10 % of the sorbed Hg is removed from the solid-phase materials at the termination of desorption in EXP1 and EXP2, respectively. The divergence of δ202Hg values between liquid and solid phases also continues into desorption. This desorption profile is linked to the initial release of easily exchangeable Hg(II) species physically sorbed to Fe/Mn oxides and clay mineral surfaces (liquid phase enriched in heavy isotopes) and then slower release of Hg(II) species that have undergone secondary reaction to more stable/less-soluble Hg(II) species and/or diffusion/transport into the mineral matrices (processes favouring lighter isotopes; solid phase enriched in lighter isotopes). The secondary production of Hg(0) within the columns is confirmed by PTD analyses that indicate distinct Hg(0) release peaks in solid-phase samples at <175 ∘C, which again agrees with field observations. Retardation (RD) and distribution (KD) coefficients are 77.9 ± 5.5 and 26.1 ± 3.0 mL g−1 in EXP1, respectively, and 38.4 ± 2.7 and 12.4 ± 0.6 mL g−1 in EXP2, respectively. These values are similar to values derived from column experiments on high-OM soil and provide the basis for future Hg fate and transport modelling in soil–groundwater systems.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"2 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139660971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter 土壤有机碳矿化受外源有机物施用剂量的控制
IF 6.8 2区 农林科学
Soil Pub Date : 2024-01-30 DOI: 10.5194/egusphere-2024-107
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, Steven Sleutel
{"title":"Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter","authors":"Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, Steven Sleutel","doi":"10.5194/egusphere-2024-107","DOIUrl":"https://doi.org/10.5194/egusphere-2024-107","url":null,"abstract":"<strong>Abstract.</strong> Substantial input of exogenous organic matter (EOM) may be required to offset the projected decline in soil organic carbon (SOC) stocks in croplands caused by global warming. However, information on the effectivity of EOM application dose in preserving SOC stocks is surprisingly limited. Therefore, we set up a 90-day incubation experiment with large soil volumes (sandy loam and silt loam) to compare the mineralization of EOM (<sup>13</sup>C-labelled ryegrass) and SOC as a function of three EOM application doses (0.5, 1.5, and 5 g dry matter kg<sup>-1</sup> soil). In the sandy loam soil, the percentage of mineralized EOM was not affected by EOM dose, while SOC mineralization increased proportionally with increasing EOM dose (+49.6 mg C per g EOM). In the silt loam soil, the percentage of mineralized EOM decreased somewhat with increasing dose, while SOC mineralization increased at a higher rate than in the sandy loam soil (+117.2 mg C per g EOM). In both textured soils, increasing EOM dose possibly supplied energy for microbial growth and enzyme production, which in turn stimulated mineralization of native SOC (i.e. co-metabolism). Higher soil macroporosity at higher EOM doses in the silt loam soil could have contributed to sustaining aerobic conditions (indicated by soil Eh) and promoting SOC priming as shown by positive relationships between pore neck size classes 43–60, 60–100 and &gt;300 μm and SOC priming, suggesting a new mechanism for understanding SOC priming. In sum, this experiment and our previous research suggest that EOM mineralization is mostly independent of EOM dose, but EOM dose modulates mineralization of native SOC. These findings tentatively indicate that using larger EOM doses could help preserve more of added EOM-C in silt loam soils, but longer-term confirmation in the field will firstly be required before we could draw any conclusion for soil C management.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"172 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139644010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信