Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2025-01-03 DOI:10.5194/soil-11-1-2025
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, Mikk Espenberg
{"title":"Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions","authors":"Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, Mikk Espenberg","doi":"10.5194/soil-11-1-2025","DOIUrl":null,"url":null,"abstract":"Abstract. Fertilised soils are a significant source of nitrous oxide (N2O), a highly active greenhouse gas and a stratospheric ozone depleter. Nitrogen (N) fertilisers, while boosting crop yield, also lead to N2O emissions into the atmosphere, impacting global warming. We investigated relationships between mineral N fertilisation rates and additional manure amendment with different crop types through the analysis of abundances of N cycle functional genes, soil N2O and N2 emissions, nitrogen use efficiency (NUE), soil physicochemical analysis and biomass production. Our study indicates that N2O emissions are predominantly dependent on the mineral N fertilisation rate and enhance with an increased mineral N fertilisation rate. Crop type also has a significant impact on soil N2O emissions. Higher N2O emissions were attained with the application of manure in comparison to mineral fertilisation. Manure amendment also increased the number of N cycle genes that are significant in the variations of N2O. The study indicates that N2O emissions were mainly related to nitrification in the soil. Quantification of nitrogen cycle functional genes also showed the potential role of denitrification, comammox (complete ammonia oxidation) and dissimilatory nitrate reduction to ammonium (DNRA) processes as a source of N2O. Our study did not find soil moisture to be significantly linked to N2O emissions. The results of the study provide evidence that, for wheat, a fertilisation rate of 80 kg N ha−1 is closest to the optimal rate for balancing biomass yield and N2O emissions and achieving a high NUE. Sorghum showed good potential for cultivation in temperate climates, as it showed a similar biomass yield compared to the other crop types and fertilisation rates but maintained low N2O emissions and N losses in a mineral N fertilisation rate of 80 kg N ha−1.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"34 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-11-1-2025","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Fertilised soils are a significant source of nitrous oxide (N2O), a highly active greenhouse gas and a stratospheric ozone depleter. Nitrogen (N) fertilisers, while boosting crop yield, also lead to N2O emissions into the atmosphere, impacting global warming. We investigated relationships between mineral N fertilisation rates and additional manure amendment with different crop types through the analysis of abundances of N cycle functional genes, soil N2O and N2 emissions, nitrogen use efficiency (NUE), soil physicochemical analysis and biomass production. Our study indicates that N2O emissions are predominantly dependent on the mineral N fertilisation rate and enhance with an increased mineral N fertilisation rate. Crop type also has a significant impact on soil N2O emissions. Higher N2O emissions were attained with the application of manure in comparison to mineral fertilisation. Manure amendment also increased the number of N cycle genes that are significant in the variations of N2O. The study indicates that N2O emissions were mainly related to nitrification in the soil. Quantification of nitrogen cycle functional genes also showed the potential role of denitrification, comammox (complete ammonia oxidation) and dissimilatory nitrate reduction to ammonium (DNRA) processes as a source of N2O. Our study did not find soil moisture to be significantly linked to N2O emissions. The results of the study provide evidence that, for wheat, a fertilisation rate of 80 kg N ha−1 is closest to the optimal rate for balancing biomass yield and N2O emissions and achieving a high NUE. Sorghum showed good potential for cultivation in temperate climates, as it showed a similar biomass yield compared to the other crop types and fertilisation rates but maintained low N2O emissions and N losses in a mineral N fertilisation rate of 80 kg N ha−1.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信