冻融过程通过调节高寒生态系统团聚体孔隙结构,与土壤有机碳的保护流失相对应

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2024-12-04 DOI:10.5194/soil-10-859-2024
Ruizhe Wang, Xia Hu
{"title":"冻融过程通过调节高寒生态系统团聚体孔隙结构,与土壤有机碳的保护流失相对应","authors":"Ruizhe Wang, Xia Hu","doi":"10.5194/soil-10-859-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Seasonal freeze–thaw processes alter soil formation and lead to changes in soil structure of alpine ecosystems. Soil aggregates are basic soil structural units and play a crucial role in soil organic carbon (SOC) protection and microbial habitation. However, the impact of seasonal freeze–thaw processes on pore structure and their impact on SOC fractions have been overlooked. This study characterized the pore structure and SOC fractions of soil aggregates of the unstable freezing period, stable frozen period, unstable thawing period and stable thawed period in typical alpine ecosystems via a dry-sieving procedure, X-ray computed tomography scanning and elemental analysis. The results showed that pore networks of 0.25–2 mm aggregates were more vulnerable to seasonal freeze–thaw processes than those of >2 mm aggregates. The freezing process promoted the formation of >80 µm pores of aggregates. The total organic carbon, particulate organic carbon and mineral-associated organic carbon contents of aggregates were high in the stable frozen period and dropped dramatically in the unstable thawing period, demonstrating that the freezing process was positively associated with SOC accumulation, while SOC loss featured in the early stage of thawing. The vertical distribution of SOC of aggregates was more uniform in the stable frozen period than in other periods. Pore equivalent diameter was the most important structural characteristic influencing SOC contents of aggregates. In the freezing period, the SOC accumulation might be enhanced by the formation of >80 µm pores. In the thawing period, pores of <15 µm were positively correlated with SOC concentration. Our results revealed that changes in pore structure induced by freeze–thaw processes could contribute to SOC protection of aggregates.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"7 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Freeze–thaw processes correspond to the protection–loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems\",\"authors\":\"Ruizhe Wang, Xia Hu\",\"doi\":\"10.5194/soil-10-859-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Seasonal freeze–thaw processes alter soil formation and lead to changes in soil structure of alpine ecosystems. Soil aggregates are basic soil structural units and play a crucial role in soil organic carbon (SOC) protection and microbial habitation. However, the impact of seasonal freeze–thaw processes on pore structure and their impact on SOC fractions have been overlooked. This study characterized the pore structure and SOC fractions of soil aggregates of the unstable freezing period, stable frozen period, unstable thawing period and stable thawed period in typical alpine ecosystems via a dry-sieving procedure, X-ray computed tomography scanning and elemental analysis. The results showed that pore networks of 0.25–2 mm aggregates were more vulnerable to seasonal freeze–thaw processes than those of >2 mm aggregates. The freezing process promoted the formation of >80 µm pores of aggregates. The total organic carbon, particulate organic carbon and mineral-associated organic carbon contents of aggregates were high in the stable frozen period and dropped dramatically in the unstable thawing period, demonstrating that the freezing process was positively associated with SOC accumulation, while SOC loss featured in the early stage of thawing. The vertical distribution of SOC of aggregates was more uniform in the stable frozen period than in other periods. Pore equivalent diameter was the most important structural characteristic influencing SOC contents of aggregates. In the freezing period, the SOC accumulation might be enhanced by the formation of >80 µm pores. In the thawing period, pores of <15 µm were positively correlated with SOC concentration. Our results revealed that changes in pore structure induced by freeze–thaw processes could contribute to SOC protection of aggregates.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/soil-10-859-2024\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-10-859-2024","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要。季节性冻融过程改变了高寒生态系统土壤的形成,导致了土壤结构的变化。土壤团聚体是土壤的基本结构单元,在土壤有机碳保护和微生物居住中起着至关重要的作用。然而,季节性冻融过程对孔隙结构的影响及其对有机碳组分的影响一直被忽视。采用干法筛分、x射线计算机断层扫描和元素分析等方法,对典型高寒生态系统不稳定冻结期、稳定冻结期、不稳定解冻期和稳定解冻期土壤团聚体的孔隙结构和有机碳组分进行了表征。结果表明,0.25-2 mm团聚体的孔隙网络比> - 2 mm团聚体的孔隙网络更容易受到季节冻融过程的影响。冻结过程促进团聚体形成80µm孔隙。团聚体总有机碳、颗粒有机碳和矿物伴生有机碳含量在稳定冻结期较高,在不稳定解冻期急剧下降,表明冻结过程与有机碳积累呈正相关,而有机碳损失主要发生在解冻前期。团聚体有机碳垂直分布在稳定冻结期比其他时期更为均匀。孔隙当量直径是影响团聚体有机碳含量最重要的结构特征。在冻结期,碳水化合物的积累可能通过形成>80µm孔隙而增强。在解冻期,<15µm的孔隙与有机碳浓度呈正相关。结果表明,冻融过程引起的孔隙结构变化有助于团聚体的有机碳保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Freeze–thaw processes correspond to the protection–loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Abstract. Seasonal freeze–thaw processes alter soil formation and lead to changes in soil structure of alpine ecosystems. Soil aggregates are basic soil structural units and play a crucial role in soil organic carbon (SOC) protection and microbial habitation. However, the impact of seasonal freeze–thaw processes on pore structure and their impact on SOC fractions have been overlooked. This study characterized the pore structure and SOC fractions of soil aggregates of the unstable freezing period, stable frozen period, unstable thawing period and stable thawed period in typical alpine ecosystems via a dry-sieving procedure, X-ray computed tomography scanning and elemental analysis. The results showed that pore networks of 0.25–2 mm aggregates were more vulnerable to seasonal freeze–thaw processes than those of >2 mm aggregates. The freezing process promoted the formation of >80 µm pores of aggregates. The total organic carbon, particulate organic carbon and mineral-associated organic carbon contents of aggregates were high in the stable frozen period and dropped dramatically in the unstable thawing period, demonstrating that the freezing process was positively associated with SOC accumulation, while SOC loss featured in the early stage of thawing. The vertical distribution of SOC of aggregates was more uniform in the stable frozen period than in other periods. Pore equivalent diameter was the most important structural characteristic influencing SOC contents of aggregates. In the freezing period, the SOC accumulation might be enhanced by the formation of >80 µm pores. In the thawing period, pores of <15 µm were positively correlated with SOC concentration. Our results revealed that changes in pore structure induced by freeze–thaw processes could contribute to SOC protection of aggregates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信