揭示土壤压实:电和电磁地球物理方法的性能

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2024-12-04 DOI:10.5194/soil-10-843-2024
Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, Francesco Morari
{"title":"揭示土壤压实:电和电磁地球物理方法的性能","authors":"Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, Francesco Morari","doi":"10.5194/soil-10-843-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Monitoring soil structure is of paramount importance due to its key role in the critical zone as the foundation of terrestrial life. Variations in the arrangement of soil components significantly influence its hydro-mechanical properties and therefore its impact on the surrounding ecosystem. In this context, soil compaction resulting from inappropriate agricultural practices not only affects soil ecological functions, but also decreases the water-use efficiency of plants by reducing porosity and increasing water loss through superficial runoff and enhanced evaporation. In this study, we compared the ability of electric and electromagnetic geophysical methods, i.e., electrical resistivity tomography (ERT) and frequency-domain electromagnetic (FDEM) method, to assess the effects caused by both heavy plastic soil deformations generated by a super-heavy vehicle and the more common tractor tramlines on silty-loam soils. We then tested correlations between geophysical response and soil variables (i.e., penetration resistance, bulk density, and volumetric water content on collected samples) at different homogeneous areas defined by k-means clustering. This work is intended to be a contribution to clarify expectations about the use of geophysical techniques to rapidly investigate soil compaction at various spatial scales, dissecting their suitability and limitations. It also aims to contribute to the methodological optimization of agrogeophysical acquisitions and data processing in order to obtain accurate soil models through a non-invasive approach. Electrical prospecting has finer spatial resolution and allows a tomographic approach, requiring higher logistic demands and the need for ground galvanic contact. On the other hand, contactless electromagnetic induction methods can be quickly used to define the distribution of electrical conductivity in the shallow subsoil in an easier way. In general, compacted soil portions are imaged as high-electrical-conductivity anomalies relative to the context. Results, validated with traditional soil characterization, show the pros and cons of both techniques and how differences in their spatial resolution heavily influence the ability to characterize compacted areas with good confidence.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"14 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering soil compaction: performance of electrical and electromagnetic geophysical methods\",\"authors\":\"Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, Francesco Morari\",\"doi\":\"10.5194/soil-10-843-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Monitoring soil structure is of paramount importance due to its key role in the critical zone as the foundation of terrestrial life. Variations in the arrangement of soil components significantly influence its hydro-mechanical properties and therefore its impact on the surrounding ecosystem. In this context, soil compaction resulting from inappropriate agricultural practices not only affects soil ecological functions, but also decreases the water-use efficiency of plants by reducing porosity and increasing water loss through superficial runoff and enhanced evaporation. In this study, we compared the ability of electric and electromagnetic geophysical methods, i.e., electrical resistivity tomography (ERT) and frequency-domain electromagnetic (FDEM) method, to assess the effects caused by both heavy plastic soil deformations generated by a super-heavy vehicle and the more common tractor tramlines on silty-loam soils. We then tested correlations between geophysical response and soil variables (i.e., penetration resistance, bulk density, and volumetric water content on collected samples) at different homogeneous areas defined by k-means clustering. This work is intended to be a contribution to clarify expectations about the use of geophysical techniques to rapidly investigate soil compaction at various spatial scales, dissecting their suitability and limitations. It also aims to contribute to the methodological optimization of agrogeophysical acquisitions and data processing in order to obtain accurate soil models through a non-invasive approach. Electrical prospecting has finer spatial resolution and allows a tomographic approach, requiring higher logistic demands and the need for ground galvanic contact. On the other hand, contactless electromagnetic induction methods can be quickly used to define the distribution of electrical conductivity in the shallow subsoil in an easier way. In general, compacted soil portions are imaged as high-electrical-conductivity anomalies relative to the context. Results, validated with traditional soil characterization, show the pros and cons of both techniques and how differences in their spatial resolution heavily influence the ability to characterize compacted areas with good confidence.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/soil-10-843-2024\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-10-843-2024","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要。监测土壤结构是至关重要的,因为它在关键地带作为陆地生命的基础起着关键作用。土壤组分排列的变化显著影响其水力学特性,从而影响其对周围生态系统的影响。在这种情况下,不适当的农业做法造成的土壤压实不仅影响土壤的生态功能,而且通过减少孔隙度和增加表面径流的水分损失和增加蒸发,降低了植物的水分利用效率。在这项研究中,我们比较了电地球物理方法和电磁地球物理方法的能力,即电阻率层析成像(ERT)和频域电磁(FDEM)方法,以评估超重车辆和更常见的拖拉机有轨电车在粉质壤土上产生的重度塑性土壤变形所造成的影响。然后,我们测试了地球物理响应与土壤变量之间的相关性(即,渗透阻力,体积密度和收集样品的体积含水量)在不同的均匀区域由k-means聚类定义。这项工作旨在澄清使用地球物理技术在不同空间尺度上快速调查土壤压实的期望,剖析其适用性和局限性。它还旨在促进农业地球物理采集和数据处理的方法优化,以便通过非侵入性方法获得准确的土壤模型。电法勘探具有更精细的空间分辨率和层析成像方法,但需要更高的物流要求和对地面电接触的需求。另一方面,采用非接触电磁感应法可以快速、简便地确定浅层底土的电导率分布。一般来说,压实的土壤部分被成像为相对于环境的高导电性异常。通过传统土壤表征验证的结果显示了这两种技术的优缺点,以及它们在空间分辨率上的差异如何严重影响以良好的信心表征压实区域的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering soil compaction: performance of electrical and electromagnetic geophysical methods
Abstract. Monitoring soil structure is of paramount importance due to its key role in the critical zone as the foundation of terrestrial life. Variations in the arrangement of soil components significantly influence its hydro-mechanical properties and therefore its impact on the surrounding ecosystem. In this context, soil compaction resulting from inappropriate agricultural practices not only affects soil ecological functions, but also decreases the water-use efficiency of plants by reducing porosity and increasing water loss through superficial runoff and enhanced evaporation. In this study, we compared the ability of electric and electromagnetic geophysical methods, i.e., electrical resistivity tomography (ERT) and frequency-domain electromagnetic (FDEM) method, to assess the effects caused by both heavy plastic soil deformations generated by a super-heavy vehicle and the more common tractor tramlines on silty-loam soils. We then tested correlations between geophysical response and soil variables (i.e., penetration resistance, bulk density, and volumetric water content on collected samples) at different homogeneous areas defined by k-means clustering. This work is intended to be a contribution to clarify expectations about the use of geophysical techniques to rapidly investigate soil compaction at various spatial scales, dissecting their suitability and limitations. It also aims to contribute to the methodological optimization of agrogeophysical acquisitions and data processing in order to obtain accurate soil models through a non-invasive approach. Electrical prospecting has finer spatial resolution and allows a tomographic approach, requiring higher logistic demands and the need for ground galvanic contact. On the other hand, contactless electromagnetic induction methods can be quickly used to define the distribution of electrical conductivity in the shallow subsoil in an easier way. In general, compacted soil portions are imaged as high-electrical-conductivity anomalies relative to the context. Results, validated with traditional soil characterization, show the pros and cons of both techniques and how differences in their spatial resolution heavily influence the ability to characterize compacted areas with good confidence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信