{"title":"Self-powered sensor based on compressible ionic gel electrolyte for simultaneous determination of temperature and pressure","authors":"Junjie Zou, Yanan Ma, Chenxu Liu, Yimei Xie, Xingyao Dai, Xinhui Li, Shuxuan Li, Shaohui Peng, Yang Yue, Shuo Wang, Ce-Wen Nan, Xin Zhang","doi":"10.1002/inf2.12545","DOIUrl":"10.1002/inf2.12545","url":null,"abstract":"<p>The simultaneous detection of multiple stimuli, such as pressure and temperature, has long been a persistent challenge for developing electronic skin (e-skin) to emulate the functionality of human skin. Meanwhile, the demand for integrated power supply units is an additional pressing concern to achieve its lightweightness and flexibility. Herein, we propose a self-powered dual temperature–pressure (SPDM) sensor, which utilizes a compressible ionic gel electrolyte driven by the potential difference between MXene and Al electrodes. The SPDM sensor exhibits a rapid and timely response to changes in pressure-induced deformation, while exhibiting a slow and hysteretic response to temperature variations. These distinct response characteristics enable the differentiation of current signals generated by different stimuli through machine learning, resulting in an impressive accuracy rate of 99.1%. Furthermore, the developed SPDM sensor exhibits a wide pressure detection range of 0–800 kPa and a broad temperature detection range of 5–75°C, encompassing the environmental conditions encountered in daily human life. The dual-mode coupled strategy by machine learning provides an effective approach for temperature and pressure detection and discrimination, showcasing its potential applications in wearable electronics, intelligent robots, human–machine interactions, and so on.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 7","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12545","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polarization-directed nanophotonic routers based on two-dimensional inorganic molecular crystals","authors":"Jiacheng Yao, Xin Feng, Tingting Zhang, Fangqi Chen, Zhenglong Zhang, Hairong Zheng, Tianyou Zhai, Tao Ding","doi":"10.1002/inf2.12548","DOIUrl":"10.1002/inf2.12548","url":null,"abstract":"<p>Photonic and plasmonic hybrid nanostructures are the key solution for integrated nanophotonic circuits with ultracompact size but relative low loss. However, the poor tunability and modulability of conventional waveguides makes them cumbersome for optical multiplexing. Here we make use of two-dimensional molecular crystal, α-Sb<sub>2</sub>O<sub>3</sub> as a dielectric waveguide via total internal reflection, which shows polarization-sensitive modulation of the propagating beams due to its large polarization mode dispersion. Both experiments and simulations are performed to verify such concept. These Sb<sub>2</sub>O<sub>3</sub> nanoflakes can be coupled with plasmonic nanowires to form nanophotonic beam splitters and routers which can be easily modulated by changing the polarization of the incidence. It thus provides a robust, exploitable and tunable platform for on-chip nanophotonics.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 8","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12548","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-electron redox chemistry enables potassium-free copper hexacyanoferrate as high-capacity cathode for aqueous Mg-ion battery","authors":"Ying Ling, Bing He, Lijie Han, Wenbin Gong, Chaofeng Chang, Qichong Zhang","doi":"10.1002/inf2.12549","DOIUrl":"10.1002/inf2.12549","url":null,"abstract":"<p>Prussian blue analogs (PBAs) are potential contestants for aqueous Mg-ion batteries (AMIBs) on account of their high discharge voltage and three-dimensional open frameworks. However, the low capacity arising from single reaction site severely restricts PBAs' practical applications in high-energy-density AMIBs. Here, an organic acid co-coordination combined with etching method is reported to fabricate defect-rich potassium-free copper hexacyanoferrate with structural water on carbon nanotube fiber (D-CuHCF@CNTF). Benefiting from the high-valence-state reactive sites, arrayed structure and defect effect, the well-designed D-CuHCF@CNTF exhibits an extraordinary reversible capacity of 146.6 mAh g<sup>−1</sup> with two-electron reaction, nearly close to its theoretical capacity. It is interesting to unlock the reaction mechanism of the Fe<sup>2+</sup>/Fe<sup>3+</sup> and Cu<sup>+</sup>/Cu<sup>2+</sup> redox couples via x-ray photoelectron spectroscopy. Furthermore, density functional theory calculations reveal that Fe and Cu in potassium-free D-CuHCF participate in charge transfer during the Mg<sup>2+</sup> insertion/extraction process. As a proof-of-concept demonstration, a rocking-chair fiber-shaped AMIBs was constructed via coupling with the NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/CNTF anode, achieving high energy density and impressive mechanical flexibility. This work provides new possibilities to develop potassium-free PBAs with dual-active sites as high-capacity cathodes for wearable AMIBs.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 6","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12549","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Materials properties and device applications of semiconducting bismuth oxyselenide","authors":"Menglu Li, Pei Chen, Yan Zhao, Mei Zhao, Huaqian Leng, Yong Wang, Sharafat Ali, Fazal Raziq, Xiaoqiang Wu, Jiabao Yi, Haiyan Xiao, Liang Qiao","doi":"10.1002/inf2.12539","DOIUrl":"10.1002/inf2.12539","url":null,"abstract":"<p>Layered two-dimensional (2D) materials have garnered marvelous attention in diverse fields, including sensors, capacitors, nanocomposites and transistors, owing to their distinctive structural morphologies and superior physicochemical properties. Recently, layered quasi-2D materials, especially layered bismuth oxyselenide (Bi<sub>2</sub>O<sub>2</sub>Se), are of particular interest, because of their different interlayer interactions from other layered 2D materials. On this basis, this material offers richer and more intriguing physics, including high electron mobility, sizeable bandgap, and remarkable thermal and chemical durability, rendering it an utterly prospective contender for use in advanced electronic and optoelectronic applications. Herein, this article reviews the recent advances related with Bi<sub>2</sub>O<sub>2</sub>Se. Initially, its structural characterization, band structure, and basic properties are briefly introduced. Further, the synthetic strategies for the preparation of Bi<sub>2</sub>O<sub>2</sub>Se are presented. Furthermore, the diverse applications of Bi<sub>2</sub>O<sub>2</sub>Se in the field of electronics and optoelectronics, photocatalytic, solar cells and sensing were summarized in detail. Ultimately, the challenges and future perspectives of Bi<sub>2</sub>O<sub>2</sub>Se are included.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 6","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12539","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140672637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2024-04-11DOI: 10.1002/inf2.12547
Haisheng Chen, Jiaying Shen, Xiaona Du, Songhua Cai, Feng Guo, Weng Fu Io, Tianhong Zhou, Zhengang Dong, Taiyu Bian, Jiaxing Guo, Weiwei Liu, Yang Zhang, Zhenping Wu, Jianhua Hao
{"title":"Frequency converting and digital modulation of light derived from lanthanide for signal encoding and logic computing","authors":"Haisheng Chen, Jiaying Shen, Xiaona Du, Songhua Cai, Feng Guo, Weng Fu Io, Tianhong Zhou, Zhengang Dong, Taiyu Bian, Jiaxing Guo, Weiwei Liu, Yang Zhang, Zhenping Wu, Jianhua Hao","doi":"10.1002/inf2.12547","DOIUrl":"10.1002/inf2.12547","url":null,"abstract":"<p>Modulation of light underpins a central part of modern optoelectronics. Conventional optical modulators based on refractive-index and absorption variation in the presence of an electric field serve as the workhorse for diverse photonic technologies. However, these approaches based on electro-refraction or electro-absorption effect impose limitations on frequency converting and signal amplification. Lanthanide-activated phosphors offer a promising platform for nonlinear frequency conversion with an abundant spectrum. Here, we propose a novel approach to achieve frequency conversion and digital modulation of light signal by coupling lanthanide luminescence with an electrically responsive ferroelectric host. The technological benefits of such paradigm-shifting solution are highlighted by demonstrating a quasi-continuous and enhancement of the lanthanide luminescence. The ability to locally manipulate light emission can convert digital information signals into visible waveforms, and visualize electrical logic and arithmetic operations. The proof-of-concept device exhibits perspectives for developing light-compatible logic functions. These results pave the way to design more controllable lanthanide photonics with desired opto-electronic coupling.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 7","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12547","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range","authors":"Yiwen Li, Shuai Guo, Boyi Wang, Jianguo Sun, Liupeng Zhao, Tianshuang Wang, Xu Yan, Fangmeng Liu, Peng Sun, John Wang, Swee Ching Tan, Geyu Lu","doi":"10.1002/inf2.12544","DOIUrl":"10.1002/inf2.12544","url":null,"abstract":"<p>The fast booming of wearable electronics provides great opportunities for intelligent gas detection with improved healthcare of mining workers, and a variety of gas sensors have been simultaneously developed. However, these sensing systems are always limited to single gas detection and are highly susceptible to the inference of ubiquitous moisture, resulting in less accuracy in the analysis of gas compositions in real mining conditions. To address these challenges, we propose a synergistic strategy based on sensor integration and machine learning algorithms to realize precise NH<sub>3</sub> and NO<sub>2</sub> gas detections under real mining conditions. A wearable sensing array based on the graphene and polyaniline composite is developed to largely enhance the sensitivity and selectivity under mixed gas conditions. Further introduction of backpropagation neural network (BP-NN) and partial least squares (PLS) algorithms could improve the accuracy of gas identification and concentration prediction and settle the inference of moisture, realizing over 99% theoretical prediction level on NH<sub>3</sub> and NO<sub>2</sub> concentrations within a wide relative humidity range, showing great promise in real mining detection. As proof of concept, a wireless wearable bracelet, integrated with sensing arrays and machine-learning algorithms, is developed for wireless real-time warning of hazardous gases in mines under different humidity conditions.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 6","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12544","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2024-03-29DOI: 10.1002/inf2.12538
Jie Wu, Yan Zeng, Xin Feng, Yiran Ma, Pengyu Li, Chunlei Li, Teng Liu, Shenghong Liu, Yinghe Zhao, Huiqiao Li, Lang Jiang, Yuanping Yi, Tianyou Zhai
{"title":"Enhanced charge transport in 2D inorganic molecular crystals constructed with charge-delocalized molecules","authors":"Jie Wu, Yan Zeng, Xin Feng, Yiran Ma, Pengyu Li, Chunlei Li, Teng Liu, Shenghong Liu, Yinghe Zhao, Huiqiao Li, Lang Jiang, Yuanping Yi, Tianyou Zhai","doi":"10.1002/inf2.12538","DOIUrl":"10.1002/inf2.12538","url":null,"abstract":"<p>Outstanding charge transport in molecular crystals is of great importance in modern electronics and optoelectronics. The widely adopted strategies to enhance charge transport, such as restraining intermolecular vibration, are mostly limited to organic molecules, which are nearly inoperative in 2D inorganic molecular crystals currently. In this contribution, charge transport in 2D inorganic molecular crystals is improved by integrating charge-delocalized Se<sub>8</sub> rings as building blocks, where the delocalized electrons on Se<sub>8</sub> rings lift the intermolecular orbitals overlap, offering efficient charge transfer channels. Besides, α-Se flakes composed of charge-delocalized Se<sub>8</sub> rings possess small exciton binding energy. Benefitting from these, α-Se flake exhibits excellent photodetection performance with an ultrafast response rate (~5 μs) and a high detectivity of 1.08 × 10<sup>11</sup> Jones. These findings contribute to a deeper understanding of the charge transport of 2D inorganic molecular crystals composed of electron-delocalized inorganic molecules and pave the way for their potential application in optoelectronics.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 7","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12538","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140367174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2024-03-28DOI: 10.1002/inf2.12542
Dongjie Liu, Peipei Dang, Guodong Zhang, Hongzhou Lian, Guogang Li, Jun Lin
{"title":"Near-infrared emitting metal halide materials: Luminescence design and applications","authors":"Dongjie Liu, Peipei Dang, Guodong Zhang, Hongzhou Lian, Guogang Li, Jun Lin","doi":"10.1002/inf2.12542","DOIUrl":"10.1002/inf2.12542","url":null,"abstract":"<p>Near-infrared (NIR) luminescent metal halide (LMH) materials have attracted great attention in various optoelectronic applications due to their low-temperature solution-processable synthesis, abundant crystallographic/electronic structures, and unique optoelectronic properties. However, some challenges still remain in their luminescence design, performance improvement, and application assignments. This review systematically summarizes the development of NIR LMHs through classifying NIR luminescent origins into four major categories: band-edge emission, self-trapped exciton (STE) emission, ion emission, and defect-related emission. The luminescence mechanisms of different types of NIR LMHs are discussed in detail by analyzing typical examples. Reasonable strategies for designing and optimizing luminescence/optoelectronic properties of NIR LMHs are summarized, including bandgap engineering, self-trapping state engineering, chemical composition modification, energy transfer, and other auxiliary strategies such as improvement of synthesis scheme and post-processing. Furthermore, application prospects based on the optoelectronic devices are revealed, including phosphor-converted light-emitting diodes (LEDs), electroluminescent LEDs, photodetectors, solar cells, and x-ray scintillators, as well as demonstrations of some related practical applications. Finally, the existing challenges and future perspectives on the development of NIR LMH materials are critically proposed. This review aims to provide general understanding and guidance for the design of high-performance NIR LMHs materials.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 5","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An intelligent self-powered life jacket system integrating multiple triboelectric fiber sensors for drowning rescue","authors":"Yiping Zhang, Chengyu Li, Chuanhui Wei, Renwei Cheng, Tianmei Lv, Junpeng Wang, Cong Zhao, Zhaoyang Wang, Fangming Li, Xiao Peng, Minyi Xu, Kai Dong","doi":"10.1002/inf2.12534","DOIUrl":"10.1002/inf2.12534","url":null,"abstract":"<p>The inherent unpredictability of the maritime environment leads to low rates of survival during accidents. Life jackets serve as a crucial safety measure in underwater environments. Nonetheless, most conventional life jackets lack the capability to monitor the wearer's underwater body movements, impeding their effectiveness in rescue operations. Here, we present an intelligent self-powered life jacket system (SPLJ) composed of a wireless body area sensing network, a set of deep learning analytics, and a human condition detection platform. Six coaxial core-shell structure triboelectric fiber sensors with high sensitivity, stretchability, and flexibility are integrated into this system. Additionally, a portable integrated circuit module is incorporated into the SPLJ to facilitate real-time monitoring of the wearer's movement. Moreover, by leveraging the deep-learning-assisted data analytics and establishing a robust correlation between the wearer's movements and condition, we have developed a comprehensive system for monitoring drowning individuals, achieving an outstanding recognition accuracy of 100%. This groundbreaking work introduces a fresh approach to underwater intelligent survival devices, offering promising prospects for advancing underwater smart wearable devices in rescue operations and the development of ocean industry.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 5","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term and short-term plasticity independently mimicked in highly reliable Ru-doped Ge2Sb2Te5 electronic synapses","authors":"Qiang Wang, Yachuan Wang, Yankun Wang, Luyue Jiang, Jinyan Zhao, Zhitang Song, Jinshun Bi, Libo Zhao, Zhuangde Jiang, Jutta Schwarzkopf, Shengli Wu, Bin Zhang, Wei Ren, Sannian Song, Gang Niu","doi":"10.1002/inf2.12543","DOIUrl":"10.1002/inf2.12543","url":null,"abstract":"<p>In order to fulfill the complex cognitive behaviors in neuromorphic systems with reduced peripheral circuits, the reliable electronic synapses mimicked by single device that achieves diverse long-term and short-term plasticity are essential. Phase change random access memory (PCRAM) is of great potential for artificial synapses, which faces, however, difficulty to realize short-term plasticity due to the long-lasting resistance drift. This work reports the ruthenium-doped Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (RuGST) based PCRAM, demonstrating a series of synaptic behaviors of short-term potentiation, pair-pulse facilitation, long-term depression, and short-term plasticity in the same single device. The optimized RuGST electronic synapse with the high transformation temperature of hexagonal phase >380°C, the outstanding endurance >10<sup>8</sup> cycles, the low resistance drift factor of 0.092, as well as the extremely high linearity with correlation coefficients of 0.999 and 0.976 in parts of potentiation and depression. Further investigations also go insight to mechanisms of Ru doping according to thorough microstructure characterization, revealing that Ru dopant is able to enter GST lattices thus changing and stabilizing atomic arrangement of GST. This leads to the short-term plasticity realized by RuGST PCRAM. Eventually, the proposed RuGST electronic synapses performs a high accuracy of ~94.1% in a task of image recognition of CIFAR-100 database using ResNet 101. This work promotes the development of PCRAM platforms for large-scale neuromorphic systems.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 8","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}