Infomat最新文献

筛选
英文 中文
NIR regeneration and visible luminescence modification in photochromic glass: A novel encryption and 3D optical storage medium 光致变色玻璃中的近红外再生和可见光发光修饰:新型加密和 3D 光学存储介质
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-29 DOI: 10.1002/inf2.12546
Heping Zhao, Yuewei Li, Chao Mi, Yingzhu Zi, Xue Bai, Asif Ali Haider, Yangke Cun, Anjun Huang, Yue Liu, Jianbei Qiu, Zhiguo Song, Jiayan Liao, Ji Zhou, Zhengwen Yang
{"title":"NIR regeneration and visible luminescence modification in photochromic glass: A novel encryption and 3D optical storage medium","authors":"Heping Zhao,&nbsp;Yuewei Li,&nbsp;Chao Mi,&nbsp;Yingzhu Zi,&nbsp;Xue Bai,&nbsp;Asif Ali Haider,&nbsp;Yangke Cun,&nbsp;Anjun Huang,&nbsp;Yue Liu,&nbsp;Jianbei Qiu,&nbsp;Zhiguo Song,&nbsp;Jiayan Liao,&nbsp;Ji Zhou,&nbsp;Zhengwen Yang","doi":"10.1002/inf2.12546","DOIUrl":"10.1002/inf2.12546","url":null,"abstract":"<p>Photochromic glass shows great promise for 3D optical information encryption and storage applications. The formation of Ag nanoclusters by light irradiation has been a significant development in the field of photochromic glass research. However, extending this approach to other metal nanoclusters remains a challenge. In this study, we present a pioneering method for crafting photochromic glass with reliably adjustable dual-mode luminescence in both the NIR and visible spectra. This was achieved by leveraging bimetallic clusters of bismuth, resulting in a distinct and novel photochromic glass. When rare-earth-doped, bismuth-based glass is irradiated with a 473 nm laser, and it undergoes a color transformation from yellow to red, accompanied by visible and broad NIR luminescence. This phenomenon is attributed to the formation of laser-induced (Bi<sup>+</sup>, Bi<sup>0</sup>) nanoclusters. We achieved reversible manipulation of the NIR luminescence of these nanoclusters and visible rare-earth luminescence by alternating exposure to a 473 nm laser and thermal stimulation. Information patterns can be inscribed and erased on a glass surface or in 3D space, and the readout is enabled by modulating visible and NIR luminescence. This study introduces a pioneering strategy for designing photochromic glasses with extensive NIR luminescence and significant potential for applications in high-capacity information encryption, optical data storage, optical communication, and NIR imaging. The exploration of bimetallic cluster formation in Bi represents a vital contribution to the advancement of multifunctional glass systems with augmented optical functionalities and versatile applications.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications 用硅化合物稳定卤化物包晶,用于光电、催化和生物成像应用
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-26 DOI: 10.1002/inf2.12559
Atanu Jana, Sangeun Cho, Abhishek Meena, Abu Talha Aqueel Ahmed, Vijaya Gopalan Sree, Youngsin Park, Hyungsang Kim, Hyunsik Im, Robert A. Taylor
{"title":"Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications","authors":"Atanu Jana, Sangeun Cho, Abhishek Meena, Abu Talha Aqueel Ahmed, Vijaya Gopalan Sree, Youngsin Park, Hyungsang Kim, Hyunsik Im, Robert A. Taylor","doi":"10.1002/inf2.12559","DOIUrl":"https://doi.org/10.1002/inf2.12559","url":null,"abstract":"Silicon belongs to group 14 elements along with carbon, germanium, tin, and lead in the periodic table. Similar to carbon, silicon is capable of forming a wide range of stable compounds, including silicon hydrides, organosilicons, silicic acids, silicon oxides, and silicone polymers. These materials have been used extensively in optoelectronic devices, sensing, catalysis, and biomedical applications. In recent years, silicon compounds have also been shown to be suitable for stabilizing delicate halide perovskite structures. These composite materials are now receiving a lot of interest for their potential use in various real-world applications. Despite exhibiting outstanding performance in various optoelectronic devices, halide perovskites are susceptible to breakdown in the presence of moisture, oxygen, heat, and UV light. Silicon compounds are thought to be excellent materials for improving both halide perovskite stability and the performance of perovskite-based optoelectronic devices. In this work, a wide range of silicon compounds that have been used in halide perovskite research and their applications in various fields are discussed. The interfacial stability, structure–property correlations, and various application aspects of perovskite and silicon compounds are also analyzed at the molecular level. This study also explores the developments, difficulties, and potential future directions associated with the synthesis and application of perovskite-silicon compounds.","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"97 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-processed lithium niobate wafer for pyroelectric sensor 用于热释电传感器的激光加工铌酸锂晶片
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-23 DOI: 10.1002/inf2.12557
Di Xin, Jing Han, Wei Song, Wenbin Han, Meng Wang, Zhimeng Li, Yunwu Zhang, Yang Li, Hong Liu, Xiaoyan Liu, Dehui Sun, Weijia Zhou
{"title":"Laser-processed lithium niobate wafer for pyroelectric sensor","authors":"Di Xin,&nbsp;Jing Han,&nbsp;Wei Song,&nbsp;Wenbin Han,&nbsp;Meng Wang,&nbsp;Zhimeng Li,&nbsp;Yunwu Zhang,&nbsp;Yang Li,&nbsp;Hong Liu,&nbsp;Xiaoyan Liu,&nbsp;Dehui Sun,&nbsp;Weijia Zhou","doi":"10.1002/inf2.12557","DOIUrl":"10.1002/inf2.12557","url":null,"abstract":"<p>During the past few decades, pyroelectric sensors have attracted extensive attention due to their prominent features. However, their effectiveness is hindered by low electric output. In this study, the laser processed lithium niobate (LPLN) wafers are fabricated to improve the temperature–voltage response. These processed wafers are utilized to construct pyroelectric sensors as well as human–machine interfaces. The laser induces escape of oxygen and the formation of oxygen vacancies, which enhance the charge transport capability on the surface of lithium niobate (LN). Therefore, the electrodes gather an increased quantity of charges, increasing the pyroelectric voltage on the LPLN wafers to a 1.3 times higher voltage than that of LN wafers. For the human–machine interfaces, tactile information in various modes can be recognized by a sensor array and the temperature warning system operates well. Therefore, the laser modification approach is promising to enhance the performance of pyroelectric devices for applications in human–machine interfaces.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12557","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries 快速界面电催化脱溶实现低温长循环寿命锌水电池
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-23 DOI: 10.1002/inf2.12558
Jian Wang, Hongfei Hu, Lujie Jia, Jing Zhang, Quan Zhuang, Linge Li, Yongzheng Zhang, Dong Wang, Qinghua Guan, Huimin Hu, Meinan Liu, Liang Zhan, Henry Adenusi, Stefano Passerini, Hongzhen Lin
{"title":"Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries","authors":"Jian Wang,&nbsp;Hongfei Hu,&nbsp;Lujie Jia,&nbsp;Jing Zhang,&nbsp;Quan Zhuang,&nbsp;Linge Li,&nbsp;Yongzheng Zhang,&nbsp;Dong Wang,&nbsp;Qinghua Guan,&nbsp;Huimin Hu,&nbsp;Meinan Liu,&nbsp;Liang Zhan,&nbsp;Henry Adenusi,&nbsp;Stefano Passerini,&nbsp;Hongzhen Lin","doi":"10.1002/inf2.12558","DOIUrl":"10.1002/inf2.12558","url":null,"abstract":"<p>Low-temperature zinc batteries (LT-ZIBs) based on aqueous electrolytes show great promise for practical applications owing to their natural resource abundance and low cost. However, they suffer from sluggish kinetics with elevated energy barriers due to the dissociation of bulky Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> solvation structure and free Zn<sup>2+</sup> diffusion, resulting in unsatisfactory lifespan and performance. Herein, dissimilar to solvation shell tuning or layer spacing enlargement engineering, delocalized electrons in cathode through constructing intrinsic defect engineering is proposed to achieve a rapid electrocatalytic desolvation to obtain free Zn<sup>2+</sup> for insertion/extraction. As revealed by density functional theory calculations and interfacial spectroscopic characterizations, the intrinsic delocalized electron distribution propels the Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> dissociation, forming a reversible interphase and facilitating Zn<sup>2+</sup> diffusion across the electrolyte/cathode interface. The as-fabricated oxygen defect-rich V<sub>2</sub>O<sub>5</sub> on hierarchical porous carbon (ODVO@HPC) electrode exhibits high capacity robustness from 25 to −20°C. Operating at −20°C, the ODVO@HPC delivers 191 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup> and lasts for 50 000 cycles at 10 A g<sup>−1</sup>, significantly enhancing the power density and lifespan under low-temperature environments in comparison to previous reports. Even with areal mass loading of ~13 mg cm<sup>−2</sup>, both coin cells and pouch batteries maintain excellent stability and areal capacities, realizing practical high-performance LT-ZIBs.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 7","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141102900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back cover image 封底图片
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-20 DOI: 10.1002/inf2.12564
Chengquan Zhong, Jingzi Zhang, Yuelin Wang, Yanwu Long, Pengzhou Zhu, Jiakai Liu, Kailong Hu, Junjie Chen, Xi Lin
{"title":"Back cover image","authors":"Chengquan Zhong,&nbsp;Jingzi Zhang,&nbsp;Yuelin Wang,&nbsp;Yanwu Long,&nbsp;Pengzhou Zhu,&nbsp;Jiakai Liu,&nbsp;Kailong Hu,&nbsp;Junjie Chen,&nbsp;Xi Lin","doi":"10.1002/inf2.12564","DOIUrl":"https://doi.org/10.1002/inf2.12564","url":null,"abstract":"<p>Based on transmittance contrast of MXene electrodes, a general strategy for constructing self-powered photodetectors with high response is proposed.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 5","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12564","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: β-In2S3 基于二维非层状材料:β-In2S3 的纳米机械谐振器实现宽范围、高线性度和快速响应压力传感
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-19 DOI: 10.1002/inf2.12553
Junzhi Zhu, Song Wu, Luming Wang, Jiaqi Wu, Jiankai Zhu, Luwei Zou, Fei Xiao, Ziluo Su, Chenyin Jiao, Shenghai Pei, Zejuan Zhang, Jiaze Qin, Bo Xu, Yu Zhou, Juan Xia, Zenghui Wang
{"title":"Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: β-In2S3","authors":"Junzhi Zhu,&nbsp;Song Wu,&nbsp;Luming Wang,&nbsp;Jiaqi Wu,&nbsp;Jiankai Zhu,&nbsp;Luwei Zou,&nbsp;Fei Xiao,&nbsp;Ziluo Su,&nbsp;Chenyin Jiao,&nbsp;Shenghai Pei,&nbsp;Zejuan Zhang,&nbsp;Jiaze Qin,&nbsp;Bo Xu,&nbsp;Yu Zhou,&nbsp;Juan Xia,&nbsp;Zenghui Wang","doi":"10.1002/inf2.12553","DOIUrl":"10.1002/inf2.12553","url":null,"abstract":"<p>Two-dimensional (2D) non-layered materials, along with their unique surface properties, offer intriguing prospects for sensing applications. Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices, such as high frequency, high tunability, and large dynamic range, which could lead to new types of high performance nanosensors. Here, we demonstrate 2D non-layered nanomechanical resonant sensors based on <i>β</i>-In<sub>2</sub>S<sub>3</sub>, where the devices exhibit robust nanomechanical vibrations up to the very high frequency (VHF) band. We show that such device can operate as pressure sensor with broad range (from 10<sup>−3</sup> Torr to atmospheric pressure), high linearity (with a nonlinearity factor as low as 0.0071), and fast response (with an intrinsic response time less than 1 μs). We further unveil the frequency scaling law in these <i>β</i>-In<sub>2</sub>S<sub>3</sub> nanomechanical sensors and successfully extract both the Young's modulus and pretension for the crystal. Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 8","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hot-carrier engineering for two-dimensional integrated infrared optoelectronics 二维集成红外光电的热载流子工程
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-13 DOI: 10.1002/inf2.12556
Yuanfang Yu, Jialin Zhang, Lianhui Wang, Zhenhua Ni, Junpeng Lu, Li Gao
{"title":"Hot-carrier engineering for two-dimensional integrated infrared optoelectronics","authors":"Yuanfang Yu,&nbsp;Jialin Zhang,&nbsp;Lianhui Wang,&nbsp;Zhenhua Ni,&nbsp;Junpeng Lu,&nbsp;Li Gao","doi":"10.1002/inf2.12556","DOIUrl":"10.1002/inf2.12556","url":null,"abstract":"<p>Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices. The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors, enabling detection of sub-bandgap infrared photons. By harvesting hot carriers prior to thermalization, energy dissipation is minimized, leading to highly efficient photoelectric conversion. Distinguished from conventional band-edge carriers, the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion. However, a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking, and the utilization of this strategy for tailoring infrared response is in its early stages. This review aims to provide a comprehensive overview of the generation, transfer and transport dynamics of hot carriers. Basic principles of hot-carrier conversion in heterostructures are discussed in detail. In addition, progresses of two-dimensional (2D) infrared hot-carrier optoelectronic devices are summarized, with a specific emphasis on photodetectors, solar cells, light-emitting devices and novel functionalities through hot-carrier engineering. Furthermore, challenges and prospects of hot-carrier device towards infrared applications are highlighted.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual-range Janus-structure pressure sensor with broad detection range and high resolution combining triboelectricity and piezoelectricity 具有宽检测范围和高分辨率的双量程 Janus 结构压力传感器,兼具三电性和压电性
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-09 DOI: 10.1002/inf2.12552
Shilong Zhao, Chaojie Chen, Zhiyuan Wang, Caofeng Pan, Cheng Yang
{"title":"A dual-range Janus-structure pressure sensor with broad detection range and high resolution combining triboelectricity and piezoelectricity","authors":"Shilong Zhao,&nbsp;Chaojie Chen,&nbsp;Zhiyuan Wang,&nbsp;Caofeng Pan,&nbsp;Cheng Yang","doi":"10.1002/inf2.12552","DOIUrl":"10.1002/inf2.12552","url":null,"abstract":"<p>Enabling pressure sensors with high resolution and a broad detection range is of paramount importance yet challenging due to the limitations of each known sensing method. Overlying different sensing mechanisms to achieve complementary functions is a promising approach, but it often leads to increased device thickness, crosstalk signals and complex signal channel management. Herein, we present a dual-functional conformable pressure sensor that adopts a Janus thin film layout, enabling simultaneous piezoelectric and triboelectric signal detection capabilities between just one electrode pair, showing a most compact device configuration. Notably, despite its thin thickness (~80 μm for a packaged device), it exhibits a broad-range detection capability with high signal resolution and fast response time, demonstrating a distinct signal-relay characteristic corresponding to piezoelectricity and triboelectricity. Despite the slimness and simple structure, it shows an impressive signal resolution of 0.93 V·kPa<sup>−1</sup> in the range of 0.1–140 kPa and 0.05 V·kPa<sup>−1</sup> in the range of 140–380 kPa. Moreover, the device fabrication can be combined with the kirigami method to improve fitting to joint surfaces. This work introduces an innovative paradigm for designing advanced pressure sensing mechanisms, enabling a single device that can meet diverse application scenarios through its simplicity, slim layout, conformable, and self-powered characteristics to adapt to multiple scenarios.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12552","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ultra thin, bright, and sensitive interactive tactile display based on organic mechanoluminescence for dual-mode handwriting identification 基于有机机械发光的超薄、明亮、灵敏的交互式触觉显示器,用于双模式手写识别
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-06 DOI: 10.1002/inf2.12523
Tingting Hou, Wenlang Li, Haoyu Wang, Yuantian Zheng, Chaojie Chen, Haoran Zhang, Kai Chen, Huilin Xie, Xin Li, Shaoshuai He, Siwei Zhang, Dengfeng Peng, Cheng Yang, Jacky W. Y. Lam, Ben Zhong Tang, Yunlong Zi
{"title":"An ultra thin, bright, and sensitive interactive tactile display based on organic mechanoluminescence for dual-mode handwriting identification","authors":"Tingting Hou,&nbsp;Wenlang Li,&nbsp;Haoyu Wang,&nbsp;Yuantian Zheng,&nbsp;Chaojie Chen,&nbsp;Haoran Zhang,&nbsp;Kai Chen,&nbsp;Huilin Xie,&nbsp;Xin Li,&nbsp;Shaoshuai He,&nbsp;Siwei Zhang,&nbsp;Dengfeng Peng,&nbsp;Cheng Yang,&nbsp;Jacky W. Y. Lam,&nbsp;Ben Zhong Tang,&nbsp;Yunlong Zi","doi":"10.1002/inf2.12523","DOIUrl":"10.1002/inf2.12523","url":null,"abstract":"<p>Visible light-based human–machine interactive media is capable of transmitting electrical readouts to machines and providing intuitive feedback to users simultaneously. Currently, many inorganic mechanoluminescent (ML) materials-based interactive media, typically ZnS-loaded phosphors (ZLPs), have been successfully demonstrated. However, organic ML materials-based solutions were rarely exploited despite their huge merits of strong structural modification, abundant luminescence property, low cost, easy preparation, and so on. Here, we propose a novel interactive tactile display (ITD) based on organic ML materials (Cz-A6-dye) and triboelectric nanogenerator, with ultra-brightness (130% enhancement) and ultra-low threshold pressure (57% reduction) as compared to ZLPs. The proposed ITD achieves the conversion of weak mechanical stimuli into visible light and electrical signals simultaneously, without extra power supplies. Furthermore, the relationship between the luminous performance of organic ML materials and mechanical force is quantified, benefiting from the uniform ML layer prepared. Enabled by convolutional neural networks, the high-accuracy recognition (97.1%) for handwriting and identity of users is realized at the same time. Thus, the ITD has great potential for intelligent wearable electronics and classified military applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 6","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging near-infrared luminescent materials for next-generation broadband optical communications 用于下一代宽带光通信的新兴近红外发光材料
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-05-02 DOI: 10.1002/inf2.12550
Beibei Xu, Chaoyuan Jin, Jae-Seong Park, Huiyun Liu, Xing Lin, Junjie Cui, Daoyuan Chen, Jianrong Qiu
{"title":"Emerging near-infrared luminescent materials for next-generation broadband optical communications","authors":"Beibei Xu,&nbsp;Chaoyuan Jin,&nbsp;Jae-Seong Park,&nbsp;Huiyun Liu,&nbsp;Xing Lin,&nbsp;Junjie Cui,&nbsp;Daoyuan Chen,&nbsp;Jianrong Qiu","doi":"10.1002/inf2.12550","DOIUrl":"10.1002/inf2.12550","url":null,"abstract":"<p>The rapid development of emerging technologies observed in recent years, such as artificial intelligence, machine learning, mobile internet, big data, cloud computing, and the Internet of Everything, are generating escalating demands for expanding the capacity density, and speed in next-generation optical communications. This poses a significant challenge to existing communication techniques. Within this context, the integration of near-infrared broadband, tunable, and high-gain luminescent materials into silicon optical circuits or fiber architectures to transmit and modulate light shows enormous potential for advancing next-generation communication techniques. Here, this review provides an overview of the recent breakthroughs in near-infrared luminescent epitaxial/colloidal quantum dots, and metal-active-center-doped materials for broadband optical amplifiers and tunable lasers. We also expound on efforts to enhance the bandwidth and gain of these materials-based amplifiers and lasers, exploring the challenges associate with developing ultra-broadband and high-speed optical communication systems. Additionally, the potential applications in Fifth Generation Fixed Networks, integration with 5G and 6G wireless networks, compensation for current Si electronic based CMOS for high computing capability, and the prospects of these light sources for next-generation optoelectronic devices are discussed.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 8","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12550","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信