Lin Wang, Shugang Xu, Zihui Song, Wanyuan Jiang, Shouhai Zhang, Xigao Jian, Fangyuan Hu
{"title":"利用 Janus 凝胶聚合物电解质促进锂的均匀沉积,实现稳定的锂金属电池","authors":"Lin Wang, Shugang Xu, Zihui Song, Wanyuan Jiang, Shouhai Zhang, Xigao Jian, Fangyuan Hu","doi":"10.1002/inf2.12551","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal batteries (LMBs) are desirable candidates owing to their high-energy advantage for next-generation batteries. However, the practical application of LMBs continues to be constrained by thorny safety issues with the formation and growth of Li dendrites. Herein, the ZIF-67 MOFs are in situ coupled onto a single face of 3D porous nanofiber to fabricate an asymmetric Janus membrane, harnessing their anion adsorption capabilities to promote the uniform deposition of Li ions. In addition, the poly(ethylene glycol) diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeleton to form Janus@GPE, which preferentially reacts with Li metal to form a LiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergistic effect of the MOFs and stable solid electrolyte interphase (SEI) layer results in superior cycling performance, achieving a remarkable 2500 h cycling at 1 mA cm<sup>−2</sup> in the Li/Janus@GPE/Li configuration. In addition, the Janus@GPE electrolyte has a certain flame retardant, which can self-extinguish within 3 s, improving the safety performance of the batteries. Consequently, the Li/Janus@GPE/LFP flexible pouch cell exhibits favorable cycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). This work provides new insights and strategies to improve the safety and practical utility of LMBs.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12551","citationCount":"0","resultStr":"{\"title\":\"Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries\",\"authors\":\"Lin Wang, Shugang Xu, Zihui Song, Wanyuan Jiang, Shouhai Zhang, Xigao Jian, Fangyuan Hu\",\"doi\":\"10.1002/inf2.12551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium metal batteries (LMBs) are desirable candidates owing to their high-energy advantage for next-generation batteries. However, the practical application of LMBs continues to be constrained by thorny safety issues with the formation and growth of Li dendrites. Herein, the ZIF-67 MOFs are in situ coupled onto a single face of 3D porous nanofiber to fabricate an asymmetric Janus membrane, harnessing their anion adsorption capabilities to promote the uniform deposition of Li ions. In addition, the poly(ethylene glycol) diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeleton to form Janus@GPE, which preferentially reacts with Li metal to form a LiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergistic effect of the MOFs and stable solid electrolyte interphase (SEI) layer results in superior cycling performance, achieving a remarkable 2500 h cycling at 1 mA cm<sup>−2</sup> in the Li/Janus@GPE/Li configuration. In addition, the Janus@GPE electrolyte has a certain flame retardant, which can self-extinguish within 3 s, improving the safety performance of the batteries. Consequently, the Li/Janus@GPE/LFP flexible pouch cell exhibits favorable cycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). This work provides new insights and strategies to improve the safety and practical utility of LMBs.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12551\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12551\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
锂金属电池(LMB)具有高能量优势,是下一代电池的理想候选材料。然而,LMB 的实际应用仍然受到锂枝晶形成和生长的棘手安全问题的制约。在本文中,ZIF-67 MOFs 被原位耦合到三维多孔纳米纤维的单面上,制成了非对称 Janus 膜,利用其阴离子吸附能力促进锂离子的均匀沉积。此外,在纳米纤维骨架中引入聚乙二醇二丙烯酸酯和甲基丙烯酸三氟甲基酯,形成 Janus@GPE,优先与金属锂反应,形成富含 LiF 的稳定 SEI 层,抑制锂枝晶的生长。重要的是,MOFs 和稳定的固体电解质相(SEI)层的协同效应带来了卓越的循环性能,在锂/Janus@GPE/锂配置中,1 mA cm-2 的循环时间达到了 2500 h。此外,Janus@GPE 电解质具有一定的阻燃性,可在 3 秒内自熄,提高了电池的安全性能。因此,锂/Janus@GPE/LFP 柔性袋电池表现出良好的循环稳定性(在 0.1 C 下,45 次循环的容量保持率为 91.8%)。这项工作为提高锂电池的安全性和实用性提供了新的见解和策略。
Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries
Lithium metal batteries (LMBs) are desirable candidates owing to their high-energy advantage for next-generation batteries. However, the practical application of LMBs continues to be constrained by thorny safety issues with the formation and growth of Li dendrites. Herein, the ZIF-67 MOFs are in situ coupled onto a single face of 3D porous nanofiber to fabricate an asymmetric Janus membrane, harnessing their anion adsorption capabilities to promote the uniform deposition of Li ions. In addition, the poly(ethylene glycol) diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeleton to form Janus@GPE, which preferentially reacts with Li metal to form a LiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergistic effect of the MOFs and stable solid electrolyte interphase (SEI) layer results in superior cycling performance, achieving a remarkable 2500 h cycling at 1 mA cm−2 in the Li/Janus@GPE/Li configuration. In addition, the Janus@GPE electrolyte has a certain flame retardant, which can self-extinguish within 3 s, improving the safety performance of the batteries. Consequently, the Li/Janus@GPE/LFP flexible pouch cell exhibits favorable cycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). This work provides new insights and strategies to improve the safety and practical utility of LMBs.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.