{"title":"Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications","authors":"Zhouping Yin, Dazhi Wang, Yunlong Guo, Zhiyuan Zhao, Liqiang Li, Wei Chen, Yongqing Duan","doi":"10.1002/inf2.12505","DOIUrl":"10.1002/inf2.12505","url":null,"abstract":"<p>Electrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (<1 μm), wide material applicability (ink viscosity 1–10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field-effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2023-12-12DOI: 10.1002/inf2.12512
Shi-Jie Yang, Jiang-Kui Hu, Feng-Ni Jiang, Hong Yuan, Ho Seok Park, Jia-Qi Huang
{"title":"Safer solid-state lithium metal batteries: Mechanisms and strategies","authors":"Shi-Jie Yang, Jiang-Kui Hu, Feng-Ni Jiang, Hong Yuan, Ho Seok Park, Jia-Qi Huang","doi":"10.1002/inf2.12512","DOIUrl":"10.1002/inf2.12512","url":null,"abstract":"<p>Solid-state batteries that employ solid-state electrolytes (SSEs) to replace routine liquid electrolytes are considered to be one of the most promising solutions for achieving high-safety lithium metal batteries. SSEs with high mechanical modulus, thermal stability, and non-flammability can not only inhibit the growth of lithium dendrites but also enhance the safety of lithium metal batteries. However, several internal materials/electrodes-related thermal hazards demonstrated by recent works show that solid-state lithium metal batteries (SSLMBs) are not impenetrable. Therefore, understanding the potential thermal hazards of SSLMBs is critical for their more secure and widespread applications. In this contribution, we provide a comprehensive overview of the thermal failure mechanism of SSLMBs from materials to devices. Also, strategies to improve the thermal safety performance of SSLMBs are included from the view of material enhancement, battery design, and external management. Consequently, the future directions are further provided. We hope that this work can shed bright insights into the path of constructing energy storage devices with high energy density and safety.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2023-11-27DOI: 10.1002/inf2.12494
Hainan Sun, Xiaomin Xu, Hyunseung Kim, Zongping Shao, WooChul Jung
{"title":"Advanced electrocatalysts with unusual active sites for electrochemical water splitting","authors":"Hainan Sun, Xiaomin Xu, Hyunseung Kim, Zongping Shao, WooChul Jung","doi":"10.1002/inf2.12494","DOIUrl":"10.1002/inf2.12494","url":null,"abstract":"<p>Electrochemical water splitting represents a promising technology for green hydrogen production. To design advanced electrocatalysts, it is crucial to identify their active sites and interpret the relationship between their structures and performance. Materials extensively studied as electrocatalysts include noble-metal-based (e.g., Ru, Ir, and Pt) and non-noble-metal-based (e.g., <i>3d</i> transition metals) compounds. Recently, advancements in characterization techniques and theoretical calculations have revealed novel and unusual active sites. The present review highlights the latest achievements in the discovery and identification of various unconventional active sites for electrochemical water splitting, with a focus on state-of-the-art strategies for determining true active sites and establishing structure–activity relationships. Furthermore, we discuss the remaining challenges and future perspectives for the development of next-generation electrocatalysts with unusual active sites. By presenting a fresh perspective on the unconventional reaction sites involved in electrochemical water splitting, this review aims to provide valuable guidance for the future study of electrocatalysts in industrial applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2023-11-27DOI: 10.1002/inf2.12485
Jianyu Chen, Yizhou Wang, Zhengnan Tian, Jin Zhao, Yanwen Ma, Husam N. Alshareef
{"title":"Recent developments in three-dimensional Zn metal anodes for battery applications","authors":"Jianyu Chen, Yizhou Wang, Zhengnan Tian, Jin Zhao, Yanwen Ma, Husam N. Alshareef","doi":"10.1002/inf2.12485","DOIUrl":"10.1002/inf2.12485","url":null,"abstract":"<p>Aqueous zinc (Zn) ion batteries (AZIBs) are regarded as one of the promising candidates for next-generation electrochemical energy storage systems due to their low cost, high safety, and environmental friendliness. However, the commercialization of AZIBs has been severely restricted by the growth of dendrite at the Zn metal anode. Tailoring the planar-structured Zn anodes into three-dimensional (3D) structures has proven to be an effective way to modulate the plating/stripping behavior of Zn anodes, resulting in the suppression of dendrite formation. This review provides an up-to-date review of 3D structured Zn metal anodes, including working principles, design, current status, and future prospects. We aim to give the readers a comprehensive understanding of 3D-structured Zn anodes and their effective usage to enhance AZIB performance.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2023-11-23DOI: 10.1002/inf2.12510
Hanxi Li, Jiayang Hu, Anzhe Chen, Yishu Zhang, Chenhao Wang, Beiduo Wang, Yi Tong, Jiachao Zhou, Kian Ping Loh, Yang Xu, Tawfique Hasan, Bin Yu
{"title":"Back Cover Image","authors":"Hanxi Li, Jiayang Hu, Anzhe Chen, Yishu Zhang, Chenhao Wang, Beiduo Wang, Yi Tong, Jiachao Zhou, Kian Ping Loh, Yang Xu, Tawfique Hasan, Bin Yu","doi":"10.1002/inf2.12510","DOIUrl":"https://doi.org/10.1002/inf2.12510","url":null,"abstract":"<p>The cover image focuses on neuronal circuit motif with specialized excitatory–inhibitory connectivity pattern. The neuronal circuit is an advanced functional unit of the brain beyond neurons and synapses. Neurons do not function in isolation and are linked to ensembles or circuit motifs that process specific types of information, enables multidimensional signal processing in the information flow of the brain. The authors demonstrate a core processor that can be employed to construct commonly used neuronal circuits and further perform bio-realistic neuromorphic computing. Exploring the working principle, physical configuration, scalable design, and extensive signal-processing capabilities of core processing neuron is crucial for advancing hardware development for brain-inspired integrated neuromorphic systems.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138432452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2023-11-23DOI: 10.1002/inf2.12509
Jianlong Ji, Zhenxing Wang, Fan Zhang, Bin Wang, Yan Niu, Xiaoning Jiang, Zeng-ying Qiao, Tian-ling Ren, Wendong Zhang, Shengbo Sang, Zhengdong Cheng, Qijun Sun
InfomatPub Date : 2023-11-21DOI: 10.1002/inf2.12503
Yifei Wang, Zhenhua Lin, Jingli Ma, Yongyi Wu, Haidong Yuan, Dongsheng Cui, Mengyang Kang, Xing Guo, Jie Su, Jinshui Miao, Zhifeng Shi, Tao Li, Jincheng Zhang, Yue Hao, Jingjing Chang
{"title":"Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse","authors":"Yifei Wang, Zhenhua Lin, Jingli Ma, Yongyi Wu, Haidong Yuan, Dongsheng Cui, Mengyang Kang, Xing Guo, Jie Su, Jinshui Miao, Zhifeng Shi, Tao Li, Jincheng Zhang, Yue Hao, Jingjing Chang","doi":"10.1002/inf2.12503","DOIUrl":"10.1002/inf2.12503","url":null,"abstract":"<p>Solar-blind ultraviolet (UV) photodetectors based on p-organic/n-Ga<sub>2</sub>O<sub>3</sub> hybrid heterojunctions have attracted extensive attention recently. Herein, the multifunctional solar-blind photodetector based on p-type poly[<i>N</i>-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT)/n-type amorphous Ga<sub>2</sub>O<sub>3</sub> (a-Ga<sub>2</sub>O<sub>3</sub>) is fabricated and investigated, which can work in the phototransistor mode coupling with self-powered mode. With the introduction of PCDTBT, the dark current of such the a-Ga<sub>2</sub>O<sub>3</sub>-based photodetector is decreased to 0.48 pA. Meanwhile, the photoresponse parameters of the a-Ga<sub>2</sub>O<sub>3</sub>-based photodetector in the phototransistor mode to solar-blind UV light are further increased, that is, responsivity (<i>R</i>), photo-detectivity (<i>D</i>*), and external quantum efficiency (EQE) enhanced to 187 A W<sup>–1</sup>, 1.3 × 10<sup>16</sup> Jones and 9.1 × 10<sup>4</sup> % under the weak light intensity of 11 μW cm<sup>–</sup><sup>2</sup>, respectively. Thanks to the formation of the built-in field in the p-PCDTBT/n-Ga<sub>2</sub>O<sub>3</sub> type-II heterojunction, the PCDTBT/Ga<sub>2</sub>O<sub>3</sub> multifunctional photodetector shows self-powered behavior. The responsivity of p-PCDTBT/n-Ga<sub>2</sub>O<sub>3</sub> multifunctional photodetector is 57.5 mA W<sup>–1</sup> at zero bias. Such multifunctional p-n hybrid heterojunction-based photodetectors set the stage for realizing high-performance amorphous Ga<sub>2</sub>O<sub>3</sub> heterojunction-based photodetectors.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12503","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging","authors":"Xue Li, Shuo-En Wu, Di Wu, Tianxiang Zhao, Pei Lin, Zhifeng Shi, Yongtao Tian, Xinjian Li, Longhui Zeng, Xuechao Yu","doi":"10.1002/inf2.12499","DOIUrl":"10.1002/inf2.12499","url":null,"abstract":"<p>Infrared (IR) detection is vital for various military and civilian applications. Recent research has highlighted the potential of two-dimensional (2D) topological semimetals in IR detection due to their distinctive advantages, including van der Waals (vdW) stacking, gapless electronic structure, and Van Hove singularities in the electronic density of states. However, challenges such as large-scale patterning, poor photoresponsivity, and high dark current of photodetectors based on 2D topological semimetals significantly impede their wider applications in low-energy photon sensing. Here, we demonstrate the in situ fabrication of PtSe<sub>2</sub>/Ge Schottky junction by directly depositing 2D PtSe<sub>2</sub> films with a vertical layer structure on a Ge substrate with an ultrathin AlO<sub>x</sub> layer. Due to high quality junction, the photodetector features a broadband response of up to 4.6 μm, along with a high specific detectivity of ~10<sup>12</sup> Jones, and operates with remarkable stability in ambient conditions as well. Moreover, the highly integrated device arrays based on PtSe<sub>2</sub>/AlO<sub>x</sub>/Ge Schottky junction showcases excellent Mid-IR (MIR) imaging capability at room temperature. These findings highlight the promising prospects of 2D topological semimetals for uncooled IR photodetection and imaging applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High sensitivity of semimetal photodetection via Bose–Einstein condensation","authors":"Tuntan Wu, Qinxi Qiu, Yongzhen Li, Qiangguo Zhou, Wanli Ma, Jingbo Li, Lin Jiang, Wei Zhou, Zhiming Huang","doi":"10.1002/inf2.12492","DOIUrl":"10.1002/inf2.12492","url":null,"abstract":"<p>The discovery of semiconductor has witnessed remarkable strides toward high performance of photodetectors attributed to its excellent carrier properties. However, semimetal, owning to the high carrier concentration and low carrier mobility compared to those of semiconductor, is generally considered unsuitable for photodetection. Herein, we demonstrate an outstanding photodetection in a layered semimetal titanium diselenide (TiSe<sub>2</sub>) in Bose–Einstein condensation (BEC) state. High sensitivity of semimetal photodetector is realized in the range of visible, infrared and terahertz bands. The noise equivalent power (NEP) has threefold improvement at the visible and infrared wavebands, and significant decrease by one order of magnitude in the terahertz frequencies via BEC phenomenon, attributed to the electrical parameter variation after condensation. The best NEP value in the terahertz frequency is comparable to that of commercial Si photodetector. Our results show another recipe to fabricate high performance of photodetection via semimetal except for semiconductor and pave the way to exploit macroscopic quantum phenomena for optoelectronics.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InfomatPub Date : 2023-11-15DOI: 10.1002/inf2.12502
Tao Jin, Long Yang, Xinyue Zhang, Wen Li, Yanzhong Pei
{"title":"Close-packed layer spacing as a practical guideline for structure symmetry manipulation of IV-VI/I-V-VI2 thermoelectrics","authors":"Tao Jin, Long Yang, Xinyue Zhang, Wen Li, Yanzhong Pei","doi":"10.1002/inf2.12502","DOIUrl":"10.1002/inf2.12502","url":null,"abstract":"<p>The crystal-structure symmetry in real space can be inherited in the reciprocal space, making high-symmetry materials the top candidates for thermoelectrics due to their potential for significant electronic band degeneracy. A practical indicator that can quantitatively describe structural changes would help facilitate the advanced thermoelectric material design. In face-centered cubic structures, the spatial environment of the same crystallographic plane family is isotropic, such that the distances between the close-packed layers can be derived from the atomic distances within the layers. Inspired by this, the relationship between inter- and intra-layer geometric information can be used to compare crystal structures with their desired cubic symmetry. The close-packed layer spacing was found to be a practical guideline of crystal structure symmetry in IV-VI chalcogenides and I-V-VI<sub>2</sub> ternary semiconductors, both of which are historically important thermoelectrics. The continuous structural evolution toward high symmetry can be described by the layer spacing when temperature or/and composition change, which is demonstrated by a series of pristine and alloyed thermoelectric materials in this work. The layer-spacing-based guideline provides a quantitative pathway for manipulating crystal structures to improve the electrical and thermal properties of thermoelectric materials.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12502","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}