Non-fullerene acceptors with heteroatom substitution on the core moiety for efficient organic photovoltaics

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-06-12 DOI:10.1002/inf2.12595
Feng Qi, Baobing Fan, Qunping Fan, Alex K.-Y. Jen
{"title":"Non-fullerene acceptors with heteroatom substitution on the core moiety for efficient organic photovoltaics","authors":"Feng Qi,&nbsp;Baobing Fan,&nbsp;Qunping Fan,&nbsp;Alex K.-Y. Jen","doi":"10.1002/inf2.12595","DOIUrl":null,"url":null,"abstract":"<p>Organic photovoltaics (OPVs) represent one of the most promising photovoltaic technologies owing to their high capacity to convert solar energy to electricity. With the continuous structure upgradation of photovoltaic materials, especially that of non-fullerene acceptors (NFAs), the OPV field has witnessed rapid progress with power conversion efficiency (PCE) exceeding 19%. However, it remains challenging to overcome the intrinsic trade-off between the photocurrent and photovoltage, restricting the further promotion of the OPV efficiency. In this regard, it is urgent to further tailor the structure of NFAs to broaden their absorption spectra while mitigating the energy loss of relevant devices concomitantly. Heteroatom substitution on the fused-ring π-core of NFAs is an efficient way to achieve this goal. In addition to improve the near-infrared light harvest by strengthening the intramolecular charge transfer, it can also enhance the molecular stacking via forming multiple noncovalent interactions, which is favorable for reducing the energetic disorder. Therefore, in this review we focus on the design rules of NFAs, including the polymerized NFAs, of which the core moiety is substituted by various kinds of heteroatoms. We also afford a comprehensive understanding on the structure–property−performance relationships of these NFAs. Finally, we anticipate the challenges restricting the efficiency promotion and industrial utilization of OPV, and provide potential solutions based on the further heteroatom optimization on NFA core-moiety.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 8","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12595","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12595","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic photovoltaics (OPVs) represent one of the most promising photovoltaic technologies owing to their high capacity to convert solar energy to electricity. With the continuous structure upgradation of photovoltaic materials, especially that of non-fullerene acceptors (NFAs), the OPV field has witnessed rapid progress with power conversion efficiency (PCE) exceeding 19%. However, it remains challenging to overcome the intrinsic trade-off between the photocurrent and photovoltage, restricting the further promotion of the OPV efficiency. In this regard, it is urgent to further tailor the structure of NFAs to broaden their absorption spectra while mitigating the energy loss of relevant devices concomitantly. Heteroatom substitution on the fused-ring π-core of NFAs is an efficient way to achieve this goal. In addition to improve the near-infrared light harvest by strengthening the intramolecular charge transfer, it can also enhance the molecular stacking via forming multiple noncovalent interactions, which is favorable for reducing the energetic disorder. Therefore, in this review we focus on the design rules of NFAs, including the polymerized NFAs, of which the core moiety is substituted by various kinds of heteroatoms. We also afford a comprehensive understanding on the structure–property−performance relationships of these NFAs. Finally, we anticipate the challenges restricting the efficiency promotion and industrial utilization of OPV, and provide potential solutions based on the further heteroatom optimization on NFA core-moiety.

Abstract Image

Abstract Image

核心分子上有杂原子取代的非富勒烯受体用于高效有机光伏技术
有机光伏(OPV)具有将太阳能转化为电能的强大能力,是最有前途的光伏技术之一。随着光伏材料结构的不断升级,特别是非富勒烯受体(NFAs)结构的升级,有机光伏领域取得了快速进展,功率转换效率(PCE)超过了 19%。然而,克服光电流与光电压之间的内在权衡仍是一项挑战,这限制了 OPV 效率的进一步提高。因此,当务之急是进一步调整 NFA 的结构,以拓宽其吸收光谱,同时减少相关器件的能量损失。在 NFA 的熔环 π 核上进行杂原子置换是实现这一目标的有效方法。除了通过加强分子内电荷转移来提高近红外光捕获能力外,它还可以通过形成多种非共价相互作用来增强分子堆叠,从而有利于减少能量无序。因此,在这篇综述中,我们重点讨论了非氟烷烃的设计规则,包括核心分子被各种杂原子取代的聚合非氟烷烃。我们还全面介绍了这些非氟烷烃的结构-性能关系。最后,我们预测了制约 OPV 效率提升和工业利用的挑战,并在进一步优化 NFA 核心分子杂原子的基础上提供了潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信