Di Zhang, Katherine J. Harmon, Michael J. Zachman, Ping Lu, Doyun Kim, Zhan Zhang, Nicholas Cucciniello, Reid Markland, Ken William Ssennyimba, Hua Zhou, Yue Cao, Matthew Brahlek, Hao Zheng, Matthew M. Schneider, Alessandro R. Mazza, Zach Hughes, Chase Somodi, Benjamin Freiman, Sarah Pooley, Sundar Kunwar, Pinku Roy, Qing Tu, Rodney J. McCabe, Aiping Chen
{"title":"高通量组合方法加速了无铅弛豫铁电系统的合成","authors":"Di Zhang, Katherine J. Harmon, Michael J. Zachman, Ping Lu, Doyun Kim, Zhan Zhang, Nicholas Cucciniello, Reid Markland, Ken William Ssennyimba, Hua Zhou, Yue Cao, Matthew Brahlek, Hao Zheng, Matthew M. Schneider, Alessandro R. Mazza, Zach Hughes, Chase Somodi, Benjamin Freiman, Sarah Pooley, Sundar Kunwar, Pinku Roy, Qing Tu, Rodney J. McCabe, Aiping Chen","doi":"10.1002/inf2.12561","DOIUrl":null,"url":null,"abstract":"<p>Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba<sub>0.7</sub>Ca<sub>0.3</sub>)TiO<sub>3</sub> (BCT) and Ba(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> (BZT) phases with continuous variation of composition and layer thickness. High-resolution x-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}<sub><i>N</i></sub> superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12561","citationCount":"0","resultStr":"{\"title\":\"High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system\",\"authors\":\"Di Zhang, Katherine J. Harmon, Michael J. Zachman, Ping Lu, Doyun Kim, Zhan Zhang, Nicholas Cucciniello, Reid Markland, Ken William Ssennyimba, Hua Zhou, Yue Cao, Matthew Brahlek, Hao Zheng, Matthew M. Schneider, Alessandro R. Mazza, Zach Hughes, Chase Somodi, Benjamin Freiman, Sarah Pooley, Sundar Kunwar, Pinku Roy, Qing Tu, Rodney J. McCabe, Aiping Chen\",\"doi\":\"10.1002/inf2.12561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba<sub>0.7</sub>Ca<sub>0.3</sub>)TiO<sub>3</sub> (BCT) and Ba(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> (BZT) phases with continuous variation of composition and layer thickness. High-resolution x-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}<sub><i>N</i></sub> superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12561\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12561\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12561","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system
Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3 (BCT) and Ba(Zr0.2Ti0.8)O3 (BZT) phases with continuous variation of composition and layer thickness. High-resolution x-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}N superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.