{"title":"实现高性能锌碘电池的双功能自分离电解质","authors":"Xueting Hu, Zequan Zhao, Yongqiang Yang, Hao Zhang, Guojun Lai, Bingan Lu, Peng Zhou, Lina Chen, Jiang Zhou","doi":"10.1002/inf2.12620","DOIUrl":null,"url":null,"abstract":"<p>Static rechargeable zinc-iodine (Zn-I<sub>2</sub>) batteries are superior in safety, cost-effectiveness, and sustainability, giving them great potential for large-scale energy storage applications. However, the shuttle effect of polyiodides on the cathode and the unstable anode/electrolyte interface hinder the development of Zn-I<sub>2</sub> batteries. Herein, a self-segregated biphasic electrolyte (SSBE) was proposed to synergistically address those issues. The strong interaction between polyiodides and the organic phase was demonstrated to limit the shuttle effect of polyiodides. Meanwhile, the hybridization of polar organic solvent in the inorganic phase modulated the bonding structure, as well as the effective weakening of water activity, optimizing the interface during zinc electroplating. As a result, the Zn-I<sub>2</sub> coin cells performed a capacity retention of nearly 100% after 4000 cycles at 2 mA cm<sup>−2</sup>. And a discharge capacity of 0.6 Ah with no degradation after 180 cycles was achieved in the pouch cell. A photovoltaic energy storage battery was further achieved and displayed a cumulative capacity of 5.85 Ah. The successfully designed energy storage device exhibits the application potential of Zn-I<sub>2</sub> batteries for stationary energy storage.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 12","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12620","citationCount":"0","resultStr":"{\"title\":\"Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries\",\"authors\":\"Xueting Hu, Zequan Zhao, Yongqiang Yang, Hao Zhang, Guojun Lai, Bingan Lu, Peng Zhou, Lina Chen, Jiang Zhou\",\"doi\":\"10.1002/inf2.12620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Static rechargeable zinc-iodine (Zn-I<sub>2</sub>) batteries are superior in safety, cost-effectiveness, and sustainability, giving them great potential for large-scale energy storage applications. However, the shuttle effect of polyiodides on the cathode and the unstable anode/electrolyte interface hinder the development of Zn-I<sub>2</sub> batteries. Herein, a self-segregated biphasic electrolyte (SSBE) was proposed to synergistically address those issues. The strong interaction between polyiodides and the organic phase was demonstrated to limit the shuttle effect of polyiodides. Meanwhile, the hybridization of polar organic solvent in the inorganic phase modulated the bonding structure, as well as the effective weakening of water activity, optimizing the interface during zinc electroplating. As a result, the Zn-I<sub>2</sub> coin cells performed a capacity retention of nearly 100% after 4000 cycles at 2 mA cm<sup>−2</sup>. And a discharge capacity of 0.6 Ah with no degradation after 180 cycles was achieved in the pouch cell. A photovoltaic energy storage battery was further achieved and displayed a cumulative capacity of 5.85 Ah. The successfully designed energy storage device exhibits the application potential of Zn-I<sub>2</sub> batteries for stationary energy storage.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"6 12\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12620\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12620\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12620","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Static rechargeable zinc-iodine (Zn-I2) batteries are superior in safety, cost-effectiveness, and sustainability, giving them great potential for large-scale energy storage applications. However, the shuttle effect of polyiodides on the cathode and the unstable anode/electrolyte interface hinder the development of Zn-I2 batteries. Herein, a self-segregated biphasic electrolyte (SSBE) was proposed to synergistically address those issues. The strong interaction between polyiodides and the organic phase was demonstrated to limit the shuttle effect of polyiodides. Meanwhile, the hybridization of polar organic solvent in the inorganic phase modulated the bonding structure, as well as the effective weakening of water activity, optimizing the interface during zinc electroplating. As a result, the Zn-I2 coin cells performed a capacity retention of nearly 100% after 4000 cycles at 2 mA cm−2. And a discharge capacity of 0.6 Ah with no degradation after 180 cycles was achieved in the pouch cell. A photovoltaic energy storage battery was further achieved and displayed a cumulative capacity of 5.85 Ah. The successfully designed energy storage device exhibits the application potential of Zn-I2 batteries for stationary energy storage.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.