在二维范德瓦尔斯异质结构中定制锂插层途径,实现高速边缘接触浮动栅晶体管和人工突触

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-07-07 DOI:10.1002/inf2.12599
Jun Yu, Jiawei Fu, Hongcheng Ruan, Han Wang, Yimeng Yu, Jinpeng Wang, Yuhui He, Jinsong Wu, Fuwei Zhuge, Ying Ma, Tianyou Zhai
{"title":"在二维范德瓦尔斯异质结构中定制锂插层途径,实现高速边缘接触浮动栅晶体管和人工突触","authors":"Jun Yu,&nbsp;Jiawei Fu,&nbsp;Hongcheng Ruan,&nbsp;Han Wang,&nbsp;Yimeng Yu,&nbsp;Jinpeng Wang,&nbsp;Yuhui He,&nbsp;Jinsong Wu,&nbsp;Fuwei Zhuge,&nbsp;Ying Ma,&nbsp;Tianyou Zhai","doi":"10.1002/inf2.12599","DOIUrl":null,"url":null,"abstract":"<p>Local phase transition in transition metal dichalcogenides (TMDCs) by lithium intercalation enables the fabrication of high-quality contact interfaces in two-dimensional (2D) electronic devices. However, controlling the intercalation of lithium is hitherto challenging in vertically stacked van der Waals heterostructures (vdWHs) due to the random diffusion of lithium ions in the hetero-interface, which hinders their application for contact engineering of 2D vdWHs devices. Herein, a strategy to restrict the lithium intercalation pathway in vdWHs is developed by using surface-permeation assisted intercalation while sealing all edges, based on which a high-performance edge-contact MoS<sub>2</sub> vdWHs floating-gate transistor is demonstrated. Our method avoids intercalation from edges that are prone to be random but intentionally promotes lithium intercalation from the top surface. The derived MoS<sub>2</sub> floating-gate transistor exhibits improved interface quality and significantly reduced subthreshold swing (<i>SS</i>) from &gt;600 to 100 mV dec<sup>–1</sup>. In addition, ultrafast program/erase performance together with well-distinguished 32 memory states are demonstrated, making it a promising candidate for low-power artificial synapses. The study on controlling the lithium intercalation pathways in 2D vdWHs offers a viable route toward high-performance 2D electronics for memory and neuromorphic computing purposes.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12599","citationCount":"0","resultStr":"{\"title\":\"Tailoring lithium intercalation pathway in 2D van der Waals heterostructure for high-speed edge-contacted floating-gate transistor and artificial synapses\",\"authors\":\"Jun Yu,&nbsp;Jiawei Fu,&nbsp;Hongcheng Ruan,&nbsp;Han Wang,&nbsp;Yimeng Yu,&nbsp;Jinpeng Wang,&nbsp;Yuhui He,&nbsp;Jinsong Wu,&nbsp;Fuwei Zhuge,&nbsp;Ying Ma,&nbsp;Tianyou Zhai\",\"doi\":\"10.1002/inf2.12599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Local phase transition in transition metal dichalcogenides (TMDCs) by lithium intercalation enables the fabrication of high-quality contact interfaces in two-dimensional (2D) electronic devices. However, controlling the intercalation of lithium is hitherto challenging in vertically stacked van der Waals heterostructures (vdWHs) due to the random diffusion of lithium ions in the hetero-interface, which hinders their application for contact engineering of 2D vdWHs devices. Herein, a strategy to restrict the lithium intercalation pathway in vdWHs is developed by using surface-permeation assisted intercalation while sealing all edges, based on which a high-performance edge-contact MoS<sub>2</sub> vdWHs floating-gate transistor is demonstrated. Our method avoids intercalation from edges that are prone to be random but intentionally promotes lithium intercalation from the top surface. The derived MoS<sub>2</sub> floating-gate transistor exhibits improved interface quality and significantly reduced subthreshold swing (<i>SS</i>) from &gt;600 to 100 mV dec<sup>–1</sup>. In addition, ultrafast program/erase performance together with well-distinguished 32 memory states are demonstrated, making it a promising candidate for low-power artificial synapses. The study on controlling the lithium intercalation pathways in 2D vdWHs offers a viable route toward high-performance 2D electronics for memory and neuromorphic computing purposes.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12599\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12599\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12599","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过锂插层实现过渡金属二卤化物(TMDCs)的局部相变,可以在二维(2D)电子器件中制造出高质量的接触界面。然而,由于锂离子在异质界面中的随机扩散,在垂直堆叠的范德华异质结构(vdWHs)中控制锂的插层具有挑战性,这阻碍了它们在二维范德华异质结构器件接触工程中的应用。在此,我们开发了一种限制锂在 vdWHs 中插层途径的策略,即在密封所有边缘的同时使用表面渗透辅助插层,并在此基础上展示了一种高性能边缘接触 MoS2 vdWHs 浮栅晶体管。我们的方法避免了容易出现随机性的边缘插层,但有意促进了顶面的锂插层。衍生出的 MoS2 浮栅晶体管改善了界面质量,并显著降低了阈下摆幅(SS),从 600 mV dec-1 降至 100 mV dec-1。此外,该晶体管还具有超快的编程/擦除性能和32种不同的记忆状态,因此有望成为低功耗人工突触的候选器件。对二维 vdWHs 中锂插层途径的控制研究为实现用于存储器和神经形态计算的高性能二维电子器件提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring lithium intercalation pathway in 2D van der Waals heterostructure for high-speed edge-contacted floating-gate transistor and artificial synapses

Tailoring lithium intercalation pathway in 2D van der Waals heterostructure for high-speed edge-contacted floating-gate transistor and artificial synapses

Tailoring lithium intercalation pathway in 2D van der Waals heterostructure for high-speed edge-contacted floating-gate transistor and artificial synapses

Local phase transition in transition metal dichalcogenides (TMDCs) by lithium intercalation enables the fabrication of high-quality contact interfaces in two-dimensional (2D) electronic devices. However, controlling the intercalation of lithium is hitherto challenging in vertically stacked van der Waals heterostructures (vdWHs) due to the random diffusion of lithium ions in the hetero-interface, which hinders their application for contact engineering of 2D vdWHs devices. Herein, a strategy to restrict the lithium intercalation pathway in vdWHs is developed by using surface-permeation assisted intercalation while sealing all edges, based on which a high-performance edge-contact MoS2 vdWHs floating-gate transistor is demonstrated. Our method avoids intercalation from edges that are prone to be random but intentionally promotes lithium intercalation from the top surface. The derived MoS2 floating-gate transistor exhibits improved interface quality and significantly reduced subthreshold swing (SS) from >600 to 100 mV dec–1. In addition, ultrafast program/erase performance together with well-distinguished 32 memory states are demonstrated, making it a promising candidate for low-power artificial synapses. The study on controlling the lithium intercalation pathways in 2D vdWHs offers a viable route toward high-performance 2D electronics for memory and neuromorphic computing purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信