具有栅极可调塞贝克系数的二维 SnP2Se6,用于电信波段光热电探测

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-07-15 DOI:10.1002/inf2.12600
Bing‐Xuan Zhu, Cheng‐Yi Zhu, Jing‐Kai Qin, Wen He, Lin‐Qing Yue, Pei‐Yu Huang, Dong Li, Ruo‐Yao Sun, Sheng Ye, Yu Du, Jie‐He Sui, Ming‐Yu Li, Jun Mao, Liang Zhen, Cheng‐Yan Xu
{"title":"具有栅极可调塞贝克系数的二维 SnP2Se6,用于电信波段光热电探测","authors":"Bing‐Xuan Zhu, Cheng‐Yi Zhu, Jing‐Kai Qin, Wen He, Lin‐Qing Yue, Pei‐Yu Huang, Dong Li, Ruo‐Yao Sun, Sheng Ye, Yu Du, Jie‐He Sui, Ming‐Yu Li, Jun Mao, Liang Zhen, Cheng‐Yan Xu","doi":"10.1002/inf2.12600","DOIUrl":null,"url":null,"abstract":"Photothermoelectric (PTE) detectors combine photothermal and thermoelectric conversion, surmounting material band gap restrictions and limitations related to matching light wavelengths, have been widely used in telecommunication band detection. Two‐dimensional (2D) materials with gate‐tunable Seebeck coefficient can induce the generation of photothermal currents under illumination by the asymmetric Seebeck coefficient, making them promising candidate for PTE detectors in the telecommunication band. In this work, we report that a newly explored van der Waals (vdW) layered material, SnP2Se6, possessing excellent field regulation capabilities and behaviors as an ideal candidate for PTE detector implementation. With the assistance of temperature‐dependent Raman characterization, the suspended atomic thin SnP2Se6 nanosheets reveal thickness‐dependent thermal conductivity of 1.4–5.7 W m−1 K−1 at room temperature. The 2D SnP2Se6 demonstrates high Seebeck coefficient (S) and power factor (PF), which are estimated to be −506 μV K−1 and 207 μW m−1 K−2, respectively. By effectively modulating the SnP2Se6 localized carrier concentration, which in turn leads to inhomogeneous Seebeck coefficients, the designed dual‐gate PTE detector with 2D SnP2Se6 channel demonstrates wide spectral photoresponse in telecommunication bands, yielding high responsivity (R = 1.2 mA W−1) and detectivity (D* = 6 × 109 Jones) under 1550 nm light illumination. Our findings provide a new material platform and device configuration for the telecommunication band detection.image","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two‐dimensional SnP2Se6 with gate‐tunable Seebeck coefficient for telecommunication band photothermoelectric detection\",\"authors\":\"Bing‐Xuan Zhu, Cheng‐Yi Zhu, Jing‐Kai Qin, Wen He, Lin‐Qing Yue, Pei‐Yu Huang, Dong Li, Ruo‐Yao Sun, Sheng Ye, Yu Du, Jie‐He Sui, Ming‐Yu Li, Jun Mao, Liang Zhen, Cheng‐Yan Xu\",\"doi\":\"10.1002/inf2.12600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photothermoelectric (PTE) detectors combine photothermal and thermoelectric conversion, surmounting material band gap restrictions and limitations related to matching light wavelengths, have been widely used in telecommunication band detection. Two‐dimensional (2D) materials with gate‐tunable Seebeck coefficient can induce the generation of photothermal currents under illumination by the asymmetric Seebeck coefficient, making them promising candidate for PTE detectors in the telecommunication band. In this work, we report that a newly explored van der Waals (vdW) layered material, SnP2Se6, possessing excellent field regulation capabilities and behaviors as an ideal candidate for PTE detector implementation. With the assistance of temperature‐dependent Raman characterization, the suspended atomic thin SnP2Se6 nanosheets reveal thickness‐dependent thermal conductivity of 1.4–5.7 W m−1 K−1 at room temperature. The 2D SnP2Se6 demonstrates high Seebeck coefficient (S) and power factor (PF), which are estimated to be −506 μV K−1 and 207 μW m−1 K−2, respectively. By effectively modulating the SnP2Se6 localized carrier concentration, which in turn leads to inhomogeneous Seebeck coefficients, the designed dual‐gate PTE detector with 2D SnP2Se6 channel demonstrates wide spectral photoresponse in telecommunication bands, yielding high responsivity (R = 1.2 mA W−1) and detectivity (D* = 6 × 109 Jones) under 1550 nm light illumination. Our findings provide a new material platform and device configuration for the telecommunication band detection.image\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/inf2.12600\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/inf2.12600","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光热电(PTE)探测器结合了光热转换和热电转换,克服了材料带隙限制和与光波长匹配相关的限制,已广泛应用于电信波段探测。具有栅极可调塞贝克系数的二维(2D)材料在光照下可通过非对称塞贝克系数诱导产生光热电流,因此有望成为电信波段 PTE 探测器的候选材料。在这项工作中,我们报告了一种新发现的范德华(vdW)层状材料 SnP2Se6,它具有出色的场调节能力和行为,是实现 PTE 探测器的理想候选材料。在随温度变化的拉曼特性分析的帮助下,悬浮的原子薄 SnP2Se6 纳米片在室温下显示出 1.4-5.7 W m-1 K-1 的随厚度变化的热导率。二维 SnP2Se6 具有很高的塞贝克系数(S)和功率因数(PF),估计分别为 -506 μV K-1 和 207 μW m-1 K-2。通过有效调节 SnP2Se6 局域载流子浓度(这反过来又会导致不均匀塞贝克系数),所设计的具有二维 SnP2Se6 沟道的双栅 PTE 探测器在 1550 纳米光照下显示出电信波段的宽光谱光响应,产生了高响应率(R = 1.2 mA W-1)和探测率(D* = 6 × 109 Jones)。我们的研究结果为电信波段探测提供了一种新的材料平台和器件配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two‐dimensional SnP2Se6 with gate‐tunable Seebeck coefficient for telecommunication band photothermoelectric detection

Two‐dimensional SnP2Se6 with gate‐tunable Seebeck coefficient for telecommunication band photothermoelectric detection
Photothermoelectric (PTE) detectors combine photothermal and thermoelectric conversion, surmounting material band gap restrictions and limitations related to matching light wavelengths, have been widely used in telecommunication band detection. Two‐dimensional (2D) materials with gate‐tunable Seebeck coefficient can induce the generation of photothermal currents under illumination by the asymmetric Seebeck coefficient, making them promising candidate for PTE detectors in the telecommunication band. In this work, we report that a newly explored van der Waals (vdW) layered material, SnP2Se6, possessing excellent field regulation capabilities and behaviors as an ideal candidate for PTE detector implementation. With the assistance of temperature‐dependent Raman characterization, the suspended atomic thin SnP2Se6 nanosheets reveal thickness‐dependent thermal conductivity of 1.4–5.7 W m−1 K−1 at room temperature. The 2D SnP2Se6 demonstrates high Seebeck coefficient (S) and power factor (PF), which are estimated to be −506 μV K−1 and 207 μW m−1 K−2, respectively. By effectively modulating the SnP2Se6 localized carrier concentration, which in turn leads to inhomogeneous Seebeck coefficients, the designed dual‐gate PTE detector with 2D SnP2Se6 channel demonstrates wide spectral photoresponse in telecommunication bands, yielding high responsivity (R = 1.2 mA W−1) and detectivity (D* = 6 × 109 Jones) under 1550 nm light illumination. Our findings provide a new material platform and device configuration for the telecommunication band detection.image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信