Infomat最新文献

筛选
英文 中文
Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries 利用 Janus 凝胶聚合物电解质促进锂的均匀沉积,实现稳定的锂金属电池
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-08-14 DOI: 10.1002/inf2.12551
Lin Wang, Shugang Xu, Zihui Song, Wanyuan Jiang, Shouhai Zhang, Xigao Jian, Fangyuan Hu
{"title":"Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries","authors":"Lin Wang,&nbsp;Shugang Xu,&nbsp;Zihui Song,&nbsp;Wanyuan Jiang,&nbsp;Shouhai Zhang,&nbsp;Xigao Jian,&nbsp;Fangyuan Hu","doi":"10.1002/inf2.12551","DOIUrl":"10.1002/inf2.12551","url":null,"abstract":"<p>Lithium metal batteries (LMBs) are desirable candidates owing to their high-energy advantage for next-generation batteries. However, the practical application of LMBs continues to be constrained by thorny safety issues with the formation and growth of Li dendrites. Herein, the ZIF-67 MOFs are in situ coupled onto a single face of 3D porous nanofiber to fabricate an asymmetric Janus membrane, harnessing their anion adsorption capabilities to promote the uniform deposition of Li ions. In addition, the poly(ethylene glycol) diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeleton to form Janus@GPE, which preferentially reacts with Li metal to form a LiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergistic effect of the MOFs and stable solid electrolyte interphase (SEI) layer results in superior cycling performance, achieving a remarkable 2500 h cycling at 1 mA cm<sup>−2</sup> in the Li/Janus@GPE/Li configuration. In addition, the Janus@GPE electrolyte has a certain flame retardant, which can self-extinguish within 3 s, improving the safety performance of the batteries. Consequently, the Li/Janus@GPE/LFP flexible pouch cell exhibits favorable cycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). This work provides new insights and strategies to improve the safety and practical utility of LMBs.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational composition engineering for high-quality Pb–Sn photodetector toward sensitive near-infrared digital imaging arrays 面向灵敏近红外数字成像阵列的高质量铅锑光电探测器的合理成分工程设计
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-08-13 DOI: 10.1002/inf2.12615
Huan Li, Yu Gao, Xin Hong, Kanghui Ke, Zilong Ye, Siwei Zhang, Kefei Shi, Zhuo Peng, Hao Yan, Man-Chung Tang, Youwei Yao, Ben Zhong Tang, Guodan Wei, Feiyu Kang
{"title":"Rational composition engineering for high-quality Pb–Sn photodetector toward sensitive near-infrared digital imaging arrays","authors":"Huan Li, Yu Gao, Xin Hong, Kanghui Ke, Zilong Ye, Siwei Zhang, Kefei Shi, Zhuo Peng, Hao Yan, Man-Chung Tang, Youwei Yao, Ben Zhong Tang, Guodan Wei, Feiyu Kang","doi":"10.1002/inf2.12615","DOIUrl":"https://doi.org/10.1002/inf2.12615","url":null,"abstract":"Broadband photodetectors (PDs) capable of multi-wavelength detection have garnered significant interest for applications in environmental monitoring, optical communication, spectral analysis, and imaging sensing. Low-bandgap Pb–Sn hybrid perovskite photodetectors can extend the spectral response from the ultraviolet–visible (UV–vis) range to the near-infrared (NIR) and reduce the toxicity associated with Pb<sup>2+</sup>. The strategic introduction of Sn<sup>2+</sup> into Cs<sub>0.15</sub>FA<sub>0.85</sub>Pb<sub><i>x</i></sub>Sn<sub>1−<i>x</i></sub>I<sub>3</sub> (<i>x</i> = 1, 0.8, 0.6, 0.5, 0.4, 0.2, and 0) not only preserves the cubic crystal structure with conformal multigrain growth but also broadens the film's absorption spectrum from 800 to 1000 nm NIR region. This indicates a well-controlled tunability of the Pb–Sn binary perovskite system. Specifically, the self-powered photodetector with a device structure of ITO/NiO<sub><i>x</i></sub>/PTAA/Cs<sub>0.15</sub>FA<sub>0.85</sub>Pb<sub>0.5</sub>Sn<sub>0.5</sub>I<sub>3</sub>/PCBM/BCP/Ag has shown remarkable optoelectrical properties. It exhibits a high external quantum efficiency (EQE) of up to 80% across the spectrum from 300 to 1000 nm, a responsivity (<i>R</i>) exceeding 0.5 A/W, and high detectivity (<i>D</i>*) value of 1.04 × 10<sup>12</sup> <i>Jones</i> at 910 nm and 3.38 × 10<sup>11</sup> <i>Jones</i> at 1000 nm after weak attenuation. Intriguingly, the dark current of the Cs<sub>0.15</sub>FA<sub>0.85</sub>Pb<sub>0.5</sub>Sn<sub>0.5</sub>I<sub>3</sub> device is four orders of magnitude lower than that of devices made with pristine Pb or Sn only, strongly correlating with its significantly increased built-in potential and reduced trap density. Consequently, it demonstrates a −3 dB bandwidth of 2.23 × 10<sup>4</sup> Hz, fast rise and decay times of 61 and 30 μs, respectively, and a linear dynamic range (LDR) of 155 dB. Benefiting from its high sensitivity, a 5 × 5 PD array for NIR imaging and non-invasive pulse detection for photoplethysmography applications has been successfully demonstrated, showcasing the prosperous potential of Pb–Sn hybrid perovskite in the NIR range.","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"1 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure designing, interface engineering, and application prospects for sodium-ion inorganic solid electrolytes 钠离子无机固体电解质的结构设计、界面工程和应用前景
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-08-12 DOI: 10.1002/inf2.12606
Meng Wu, Hong Liu, Xiang Qi, Dabing Li, Chao Wang, Ce-Wen Nan, Li-Zhen Fan
{"title":"Structure designing, interface engineering, and application prospects for sodium-ion inorganic solid electrolytes","authors":"Meng Wu,&nbsp;Hong Liu,&nbsp;Xiang Qi,&nbsp;Dabing Li,&nbsp;Chao Wang,&nbsp;Ce-Wen Nan,&nbsp;Li-Zhen Fan","doi":"10.1002/inf2.12606","DOIUrl":"10.1002/inf2.12606","url":null,"abstract":"<p>All-solid Na-ion batteries (ASNIBs) present significant potential for integration into large-scale energy storage systems, capitalizing on their abundant raw materials, exemplary safety, and high energy density. Among the pivotal components propelling the advancement of ASNIBs, inorganic solid electrolytes (ISEs) have garnered substantial attention in recent years due to their high ionic conductivity (<i>σ</i>), wide electrochemical stability window (ESW), and high shear modulus. Herein, this review systematically encapsulates the latest strides in Na-ion ISEs, furnishing a comprehensive panorama of various ISE systems along with their interface engineering strategies against the electrodes. The prime focus resides in accentuating key strategies for refining ion conduction properties and interfacial compatibility of ISEs through structure design and interface modification. Furthermore, the review explores the foremost challenges and prospects inherent to sodium-ion ISEs, striving to deepen our understanding of how to engineer more robust and efficient ISEs and interface stability, poised for the forthcoming era of advanced ASNIBs.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulating crystallographic growth orientation by cation-enhanced gel-polymer electrolytes toward reversible low-temperature zinc-ion batteries 通过阳离子增强凝胶聚合物电解质操纵晶体生长取向,开发可逆式低温锌离子电池
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-08-08 DOI: 10.1002/inf2.12611
Yanlu Mu, Fulu Chu, Baolei Wang, Taizhong Huang, Zhanyu Ding, Delong Ma, Feng Liu, Hong Liu, Haiqing Wang
{"title":"Manipulating crystallographic growth orientation by cation-enhanced gel-polymer electrolytes toward reversible low-temperature zinc-ion batteries","authors":"Yanlu Mu,&nbsp;Fulu Chu,&nbsp;Baolei Wang,&nbsp;Taizhong Huang,&nbsp;Zhanyu Ding,&nbsp;Delong Ma,&nbsp;Feng Liu,&nbsp;Hong Liu,&nbsp;Haiqing Wang","doi":"10.1002/inf2.12611","DOIUrl":"10.1002/inf2.12611","url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) have garnered significant research interest as promising next-generation energy storage technologies owing to their affordability and high level of safety. However, their restricted ionic conductivity at subzero temperatures, along with dendrite formation and subsequent side reactions, unavoidably hinder the implementation of grid-scale applications. In this study, a novel bimetallic cation-enhanced gel polymer electrolyte (Ni/Zn-GPE) was engineered to address these issues. The Ni/Zn-GPE effectively disrupted the hydrogen-bonding network of water, resulting in a significant reduction in the freezing point of the electrolyte. Consequently, the designed electrolyte demonstrates an impressive ionic conductivity of 28.70 mS cm<sup>−1</sup> at −20°C. In addition, Ni<sup>2+</sup> creates an electrostatic shielding interphase on the Zn surface, which confines the sequential Zn<sup>2+</sup> nucleation and deposition to the Zn (002) crystal plane. Moreover, the intrinsically high activation energy of the Zn (002) crystal plane generated a dense and dendrite-free plating/stripping morphology and resisted side reactions. Consequently, symmetrical batteries can achieve over 2700 hours of reversible cycling at 5 mA cm<sup>−2</sup>, while the Zn || V<sub>2</sub>O<sub>5</sub> battery retains 85.3% capacity after 1000 cycles at −20°C. This study provides novel insights for the development and design of reversible low-temperature zinc-ion batteries.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 11","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-stability two-dimensional perovskite LaNb2O7 for high-performance wide-temperature (80–780 K) UV light detection and human motion detection 用于高性能宽温(80-780 K)紫外光检测和人体运动检测的高稳定性二维过氧化物 LaNb2O7
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-08-01 DOI: 10.1002/inf2.12614
Yong Zhang, Jian Yao, Lin Wang, Long Chen, Junyi Du, Pin Zhao, Qing Guo, Zhen Zhang, Lixing Kang, Xiaosheng Fang
{"title":"High-stability two-dimensional perovskite LaNb2O7 for high-performance wide-temperature (80–780 K) UV light detection and human motion detection","authors":"Yong Zhang, Jian Yao, Lin Wang, Long Chen, Junyi Du, Pin Zhao, Qing Guo, Zhen Zhang, Lixing Kang, Xiaosheng Fang","doi":"10.1002/inf2.12614","DOIUrl":"https://doi.org/10.1002/inf2.12614","url":null,"abstract":"The unity of high-stability and high-performance in two-dimensional (2D) material devices has consistently posed a fundamental challenge. Halide perovskites have shown exceptional optoelectronic properties but poor stability. Conversely, oxide perovskites exhibit exceptional stability, yet hardly achieve their high photoelectric performances. Herein, for the first time, high-stability 2D perovskite LaNb<sub>2</sub>O<sub>7</sub> (LNO) is engineered for high-performance wide-temperature UV light detection and human motion detection. High-quality LNO nanosheets are prepared by solid-state calcination and liquid-phase exfoliation technique, resulting in exceptional stability against high temperature, acid, and alkali solutions. As expected, individual LNO nanosheet device achieves ultra-wide temperature (80–780 K) and ultra-high (3.7 × 10<sup>4</sup> A W<sup>−1</sup> at 780 K) UV light detection. Importantly, it shows high responsivity (171 A W<sup>−1</sup>), extraordinary detectivity (4 × 10<sup>12</sup> Jones), fast speed (0.3/97 ms), and long-term stability under ambient conditions. In addition, wafer-scale LNO film devices can be used as pixel array detectors for UV imaging, and large-area flexible LNO film devices exhibit satisfactory photodetection performance after repeated bending tests. Interestingly, LNO nanosheets also exhibit distinct piezoelectric characteristics, which can serve as high-sensitivity stress sensors for human motion detection. These encouraging results may pave the way for more innovative advances in 2D perovskite oxide materials and their diverse applications.","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"50 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite electrolyte with self-inserted structure and all-trans F conformation provides fast Li+ transport for solid-state Li metal batteries 具有自嵌结构和全反式 F 构象的复合电解质可为固态锂金属电池提供快速的 Li+ 传输
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-07-30 DOI: 10.1002/inf2.12613
Ziyang Liang, Chang Liu, Xiang Bai, Jiahui Zhang, Xinyue Chang, Lixiang Guan, Tiantian Lu, Huayun Du, Yinghui Wei, Qian Wang, Tao Wei, Wen Liu, Henghui Zhou
{"title":"Composite electrolyte with self-inserted structure and all-trans F conformation provides fast Li+ transport for solid-state Li metal batteries","authors":"Ziyang Liang,&nbsp;Chang Liu,&nbsp;Xiang Bai,&nbsp;Jiahui Zhang,&nbsp;Xinyue Chang,&nbsp;Lixiang Guan,&nbsp;Tiantian Lu,&nbsp;Huayun Du,&nbsp;Yinghui Wei,&nbsp;Qian Wang,&nbsp;Tao Wei,&nbsp;Wen Liu,&nbsp;Henghui Zhou","doi":"10.1002/inf2.12613","DOIUrl":"10.1002/inf2.12613","url":null,"abstract":"<p>Solid-state Li metal battery has attracted increasing interests for its potentially high energy density and excellent safety assurance, which is a promising candidate for next generation battery system. However, the low ionic conductivity and Li<sup>+</sup> transport number of solid-state polymer electrolytes limit their practical application. Herein, a composite polymer electrolyte with self-inserted structure is proposed using the layered double hydroxides (LDHs) as dopant to achieve a fast Li<sup>+</sup> transport channel in poly(vinylidene-co-trifluoroethylene) [P(VDF-TrFE)] based polymer electrolyte. In such a composite electrolyte, P(VDF-TrFE) polymer has an all-trans conformation, in which all fluorine atoms locate on one side of the polymer chain, providing fast Li<sup>+</sup> transport highways. Meanwhile, the LDH can immobilize the anions of Li salts based on the electrostatic interactions, promoting the dissociation of Li salts, thereby enhancing the ionic conductivity (6.4 × 10<sup>−4</sup> S cm<sup>−1</sup>) and Li<sup>+</sup> transference number (0.76). The anion immobilization effect can realize uniform electric field distribution at the anode surface and suppress the dendritic Li growth. Moreover, the hydrogen bonding interaction between LDH and polymer chains also endows the composite electrolyte with strong mechanical properties. Thus, at room temperature, the Li || Li symmetric cells can be stably cycled over 1000 h at a current density of 0.2 mA cm<sup>−2</sup>, and the full cells with LiFePO<sub>4</sub> cathode deliver a high capacity retention (&gt;95%) after 200 cycles. This work offers a promising route to construct solid-state polymer electrolytes with fast Li<sup>+</sup> transport.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 11","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back cover image 封底图片
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-07-22 DOI: 10.1002/inf2.12616
Jian Wang, Hongfei Hu, Lujie Jia, Jing Zhang, Quan Zhuang, Linge Li, Yongzheng Zhang, Dong Wang, Qinghua Guan, Huimin Hu, Meinan Liu, Liang Zhan, Henry Adenusi, Stefano Passerini, Hongzhen Lin
{"title":"Back cover image","authors":"Jian Wang,&nbsp;Hongfei Hu,&nbsp;Lujie Jia,&nbsp;Jing Zhang,&nbsp;Quan Zhuang,&nbsp;Linge Li,&nbsp;Yongzheng Zhang,&nbsp;Dong Wang,&nbsp;Qinghua Guan,&nbsp;Huimin Hu,&nbsp;Meinan Liu,&nbsp;Liang Zhan,&nbsp;Henry Adenusi,&nbsp;Stefano Passerini,&nbsp;Hongzhen Lin","doi":"10.1002/inf2.12616","DOIUrl":"10.1002/inf2.12616","url":null,"abstract":"<p>Delocalized electron engineering of layer-structured V<sub>2</sub>O<sub>5</sub> cathode is proposed to facilitate free Zn<sup>2+</sup> formation and diffusion under low temperature.\u0000\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 7","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sub-nano cluster decoration for the manipulation of the photogenerated carrier behavior of MoS2 操纵 MoS2 光生载流子行为的亚纳米簇装饰
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-07-21 DOI: 10.1002/inf2.12610
Ran Duan, Weihong Qi, Kewei Tang, Weimin Liu
{"title":"Sub-nano cluster decoration for the manipulation of the photogenerated carrier behavior of MoS2","authors":"Ran Duan, Weihong Qi, Kewei Tang, Weimin Liu","doi":"10.1002/inf2.12610","DOIUrl":"https://doi.org/10.1002/inf2.12610","url":null,"abstract":"For most applications based on the photoelectric effect, uncontrollable photogenerated carrier behavior, such as trapping and recombination, is a common issue that reduces the carrier utilization efficiency. Herein, a sub-nano cluster (Pd, Ru, and PdRu alloy) decoration strategy is proposed to manipulate the photogenerated carrier behavior in MoS<sub>2</sub> to optimize the optoelectronic properties. After decoration, electrons can flow into sub-nano cluster through Pd<span></span>S bonds and then return to MoS<sub>2</sub> through Ru<span></span>S bonds at the sub-nano cluster/MoS<sub>2</sub> interface when holes are left in the channel for collection to achieve efficient carrier separation. In addition, the formation of metal<span></span>S bonds also leads to the generation of mid-gap states, which enables light absorption over a wide wavelength range. Therefore, the photodetector based on PdRu/MoS<sub>2</sub> shows broadband photodetection ability from 532 to 1550 nm with high responsivity/external quantum efficiency of 310.8 A W<sup>−1</sup>/7 × 10<sup>4</sup>% (532 nm), 4.2 A W<sup>−1</sup>/527% (980 nm), and 7.14 mA W<sup>−1</sup>/0.5% (1550 nm), as well as a fast response speed (rise/decay time of 11.5/12.0 ms). Our work offers new insight into manipulating the photogenerated carrier behavior to optimize the performance of semiconducting 2D materials for practical optoelectronic applications.","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"48 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-low power consumption flexible sensing electronics by dendritic bilayer MoS2 树枝状双层 MoS2 实现超低功耗柔性传感电子器件
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-07-17 DOI: 10.1002/inf2.12605
Lei Luo, Jiuwei Gao, Lu Zheng, Lei Li, Weiwei Li, Manzhang Xu, Hanjun Jiang, Yue Li, Hao Wu, Hongjia Ji, Xuan Dong, Ruoqing Zhao, Zheng Liu, Xuewen Wang, Wei Huang
{"title":"Ultra-low power consumption flexible sensing electronics by dendritic bilayer MoS2","authors":"Lei Luo,&nbsp;Jiuwei Gao,&nbsp;Lu Zheng,&nbsp;Lei Li,&nbsp;Weiwei Li,&nbsp;Manzhang Xu,&nbsp;Hanjun Jiang,&nbsp;Yue Li,&nbsp;Hao Wu,&nbsp;Hongjia Ji,&nbsp;Xuan Dong,&nbsp;Ruoqing Zhao,&nbsp;Zheng Liu,&nbsp;Xuewen Wang,&nbsp;Wei Huang","doi":"10.1002/inf2.12605","DOIUrl":"10.1002/inf2.12605","url":null,"abstract":"<p>Two-dimensional transition metal dichalcogenides (2D TMDs) are promising as sensing materials for flexible electronics and wearable systems in artificial intelligence, tele-medicine, and internet of things (IoT). Currently, the study of 2D TMDs-based flexible strain sensors mainly focuses on improving the performance of sensitivity, response, detection resolution, cyclic stability, and so on. There are few reports on power consumption despite that it is of significant importance for wearable electronic systems. It is still challenging to effectively reduce the power consumption for prolonging the endurance of electronic systems. Herein, we propose a novel approach to realize ultra-low power consumption strain sensors by reducing the contact resistance between metal electrodes and 2D MoS<sub>2</sub>. A dendritic bilayer MoS<sub>2</sub> has been designed and synthesized by a modified CVD method. Large-area edge contact has been introduced in the dendritic MoS<sub>2</sub>, resulting in decreased the contact resistance significantly. The contact resistance can be down to 5.4 kΩ μm, which is two orders of magnitude lower than the conventional MoS<sub>2</sub> devices. We fabricate a flexible strain sensor, exhibiting superior sensitivity in detecting strains with high resolution (0.04%) and an ultra-low power consumption (33.0 pW). This study paves the way for future wearable and flexible sensing electronics with high sensitivity and ultra-low power consumption.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 12","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12605","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Component leaching of water oxidation electrocatalysts 水氧化电催化剂的成分沥滤
IF 22.7 1区 材料科学
Infomat Pub Date : 2024-07-16 DOI: 10.1002/inf2.12609
Gao Chen, Yanping Zhu, Sixuan She, Zezhou Lin, Hainan Sun, Haitao Huang
{"title":"Component leaching of water oxidation electrocatalysts","authors":"Gao Chen,&nbsp;Yanping Zhu,&nbsp;Sixuan She,&nbsp;Zezhou Lin,&nbsp;Hainan Sun,&nbsp;Haitao Huang","doi":"10.1002/inf2.12609","DOIUrl":"10.1002/inf2.12609","url":null,"abstract":"<p>Most electrocatalysts are known to experience structural change during the oxygen evolution reaction (OER) process. Considerable endeavors have been dedicated thus far to comprehending the catalytic process and uncovering the underlying mechanism. During the dynamic evolution of catalyst structure, component leaching of electrocatalysts is the most common phenomenon. This article offers a concise overview of recent findings and developments related to the leaching phenomena in the OER process in terms of fundamental understanding of leaching, advanced characterization techniques used to investigate leaching, leaching of inactive components, and leaching of active components. Leaching behaviors and the induced effects in various kinds of OER catalysts are discussed, progress in manipulating leaching amount/degree toward a tunable surface evolution is spotlighted, and finally, three representative types of structure transformations induced by leaching metastable species in OER condition are proposed. By understanding the process of component leaching in the OER, it will provide more guidance for the rational design of superior electrocatalysts.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 11","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12609","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信