利用载流子优化强化Bi0.5Sb1.5Te3的低温热电冷却

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2025-02-12 DOI:10.1002/inf2.12663
Xuemei Wang, Zhiwei Chen, Shuxian Zhang, Xinyue Zhang, Rui Zhou, Wen Li, Jun Luo, Yanzhong Pei
{"title":"利用载流子优化强化Bi0.5Sb1.5Te3的低温热电冷却","authors":"Xuemei Wang,&nbsp;Zhiwei Chen,&nbsp;Shuxian Zhang,&nbsp;Xinyue Zhang,&nbsp;Rui Zhou,&nbsp;Wen Li,&nbsp;Jun Luo,&nbsp;Yanzhong Pei","doi":"10.1002/inf2.12663","DOIUrl":null,"url":null,"abstract":"<p>As the best-performing materials for thermoelectric cooling, Bi<sub>2</sub>Te<sub>3</sub>-based alloys have long attracted attention to optimizing the room-temperature performance of Bi<sub>2</sub>Te<sub>3</sub> for both power generation and refrigeration applications. This focus leads to less emphasis and fewer reports on the cooling capability below room temperature. Given that the optimal carrier concentration (<i>n</i><sub>opt</sub>) for maximizing the cooling power is highly temperature dependent, roughly following the relationship <i>n</i><sub>opt</sub>∝<i>T</i><sup>3/2</sup>, lowering the carrier concentration is essential to improve the cooling capability at cryogenic temperatures. Taking p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> as an example, careful control of doping in this work enables a reduction in carrier concentration to 1.7 × 10<sup>19</sup> cm<sup>−3</sup> from its optimum at 300 K of 3.4 × 10<sup>19</sup> cm<sup>−3</sup>. This work successfully shifts the temperature at which the thermoelectric figure of merit (<i>zT</i>) peaks down to 315 K, with an average <i>zT</i> as high as 0.8 from 180 to 300 K. Further pairing with commercial n-type Bi<sub>2</sub>Te<sub>3</sub>-alloys, the cooling device realizes a temperature drop as large as 68 K from 300 K and 24 K from 180 K, demonstrating the extended cooling capability of thermoelectric coolers at cryogenic temperatures.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 5","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12663","citationCount":"0","resultStr":"{\"title\":\"Enhanced cryogenic thermoelectric cooling of Bi0.5Sb1.5Te3 by carrier optimization\",\"authors\":\"Xuemei Wang,&nbsp;Zhiwei Chen,&nbsp;Shuxian Zhang,&nbsp;Xinyue Zhang,&nbsp;Rui Zhou,&nbsp;Wen Li,&nbsp;Jun Luo,&nbsp;Yanzhong Pei\",\"doi\":\"10.1002/inf2.12663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the best-performing materials for thermoelectric cooling, Bi<sub>2</sub>Te<sub>3</sub>-based alloys have long attracted attention to optimizing the room-temperature performance of Bi<sub>2</sub>Te<sub>3</sub> for both power generation and refrigeration applications. This focus leads to less emphasis and fewer reports on the cooling capability below room temperature. Given that the optimal carrier concentration (<i>n</i><sub>opt</sub>) for maximizing the cooling power is highly temperature dependent, roughly following the relationship <i>n</i><sub>opt</sub>∝<i>T</i><sup>3/2</sup>, lowering the carrier concentration is essential to improve the cooling capability at cryogenic temperatures. Taking p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> as an example, careful control of doping in this work enables a reduction in carrier concentration to 1.7 × 10<sup>19</sup> cm<sup>−3</sup> from its optimum at 300 K of 3.4 × 10<sup>19</sup> cm<sup>−3</sup>. This work successfully shifts the temperature at which the thermoelectric figure of merit (<i>zT</i>) peaks down to 315 K, with an average <i>zT</i> as high as 0.8 from 180 to 300 K. Further pairing with commercial n-type Bi<sub>2</sub>Te<sub>3</sub>-alloys, the cooling device realizes a temperature drop as large as 68 K from 300 K and 24 K from 180 K, demonstrating the extended cooling capability of thermoelectric coolers at cryogenic temperatures.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12663\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12663\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12663","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为热电制冷性能最好的材料,优化Bi2Te3基合金在发电和制冷领域的室温性能一直备受关注。这种关注导致对室温以下冷却能力的强调和报道较少。考虑到使冷却能力最大化的最佳载流子浓度(nopt)高度依赖于温度,大致遵循nopt∝T3/2的关系,降低载流子浓度对于提高低温下的冷却能力至关重要。以p型Bi0.5Sb1.5Te3为例,在本工作中,仔细控制掺杂可以使载流子浓度从300 K时的3.4 × 1019 cm−3的最佳浓度降低到1.7 × 1019 cm−3。这项工作成功地将热电性能值(zT)的峰值温度降低到315 K,平均zT高达0.8,从180到300 K。进一步与商业n型bi2te3合金配对,该冷却装置实现了从300 K到68 K的温度下降,从180 K到24 K的温度下降,证明了热电冷却器在低温下的扩展冷却能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced cryogenic thermoelectric cooling of Bi0.5Sb1.5Te3 by carrier optimization

As the best-performing materials for thermoelectric cooling, Bi2Te3-based alloys have long attracted attention to optimizing the room-temperature performance of Bi2Te3 for both power generation and refrigeration applications. This focus leads to less emphasis and fewer reports on the cooling capability below room temperature. Given that the optimal carrier concentration (nopt) for maximizing the cooling power is highly temperature dependent, roughly following the relationship noptT3/2, lowering the carrier concentration is essential to improve the cooling capability at cryogenic temperatures. Taking p-type Bi0.5Sb1.5Te3 as an example, careful control of doping in this work enables a reduction in carrier concentration to 1.7 × 1019 cm−3 from its optimum at 300 K of 3.4 × 1019 cm−3. This work successfully shifts the temperature at which the thermoelectric figure of merit (zT) peaks down to 315 K, with an average zT as high as 0.8 from 180 to 300 K. Further pairing with commercial n-type Bi2Te3-alloys, the cooling device realizes a temperature drop as large as 68 K from 300 K and 24 K from 180 K, demonstrating the extended cooling capability of thermoelectric coolers at cryogenic temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信