Harnessing conversion bridge strategy by organic semiconductor in polymer matrix memristors for high-performance multi-modal neuromorphic signal processing

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2025-01-05 DOI:10.1002/inf2.12659
Weijia Dong, Xuan Ji, Chuanbin An, Chenhui Xu, Xuwen Zhang, Bin Zhao, Yuqian Liu, Shiyu Wang, Xi Yu, Xinjun Liu, Yang Han, Yanhou Geng
{"title":"Harnessing conversion bridge strategy by organic semiconductor in polymer matrix memristors for high-performance multi-modal neuromorphic signal processing","authors":"Weijia Dong,&nbsp;Xuan Ji,&nbsp;Chuanbin An,&nbsp;Chenhui Xu,&nbsp;Xuwen Zhang,&nbsp;Bin Zhao,&nbsp;Yuqian Liu,&nbsp;Shiyu Wang,&nbsp;Xi Yu,&nbsp;Xinjun Liu,&nbsp;Yang Han,&nbsp;Yanhou Geng","doi":"10.1002/inf2.12659","DOIUrl":null,"url":null,"abstract":"<p>Organic memristors, integrating chemically designed resistive switching and mechanical flexibility, present promising hardware opportunities for neuromorphic computing, particularly in the development of next-generation wearable artificial intelligence devices. However, challenges persist in achieving high yield, controllable switching, and multi-modal information processing. In this study, we introduce an efficient distribution of conversion bridges (EDCB) strategy by dispersing organic semiconductor (poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene], PBTTT) in elastomer (polystyrene-<i>block</i>-poly(ethylene-ran-butylene)-<i>block</i>-polystyrene, SEBS). This innovative approach results in memristors with exceptional yield, high stretchability, and reliable switching performance. By fine-tuning the semiconductor content, we shift the primary charge carriers from ions to electrons, realizing modulable non-volatile, and volatile duo-mode memristors. This advancement enables multi-modal signal processing at distinct operational mechanisms—non-volatile mode for image recognition in convolutional neural networks (CNNs) and volatile mode for dynamic classification and prediction in reservoir computing (RC). A fully analog RC hardware system is further demonstrated by integrating the distinct volatile and non-volatile modes of the EDCB-based memristor into the dynamic neuron network and the linear regression layer of the RC respectively, achieving high accuracy in online arrhythmia detection tasks. Our work paves the way for high-yield organic memristors with mechanical flexibility, advancing efficient multi-mode neuromorphic computing within a unified memristor system integrating volatile and non-volatile functionalities.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 5","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12659","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12659","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic memristors, integrating chemically designed resistive switching and mechanical flexibility, present promising hardware opportunities for neuromorphic computing, particularly in the development of next-generation wearable artificial intelligence devices. However, challenges persist in achieving high yield, controllable switching, and multi-modal information processing. In this study, we introduce an efficient distribution of conversion bridges (EDCB) strategy by dispersing organic semiconductor (poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene], PBTTT) in elastomer (polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene, SEBS). This innovative approach results in memristors with exceptional yield, high stretchability, and reliable switching performance. By fine-tuning the semiconductor content, we shift the primary charge carriers from ions to electrons, realizing modulable non-volatile, and volatile duo-mode memristors. This advancement enables multi-modal signal processing at distinct operational mechanisms—non-volatile mode for image recognition in convolutional neural networks (CNNs) and volatile mode for dynamic classification and prediction in reservoir computing (RC). A fully analog RC hardware system is further demonstrated by integrating the distinct volatile and non-volatile modes of the EDCB-based memristor into the dynamic neuron network and the linear regression layer of the RC respectively, achieving high accuracy in online arrhythmia detection tasks. Our work paves the way for high-yield organic memristors with mechanical flexibility, advancing efficient multi-mode neuromorphic computing within a unified memristor system integrating volatile and non-volatile functionalities.

利用有机半导体在聚合物基忆阻器中的转换桥策略实现高性能多模态神经形态信号处理
有机忆阻器集成了化学设计的电阻开关和机械灵活性,为神经形态计算提供了有前途的硬件机会,特别是在下一代可穿戴人工智能设备的开发中。然而,在实现高产量、可控开关和多模态信息处理方面仍然存在挑战。在本研究中,我们通过在弹性体(聚苯乙烯-嵌段聚(乙烯-对丁烯)-嵌段聚苯乙烯,SEBS)中分散有机半导体(聚[2,5-双(3-四烷基噻吩-2-基)噻吩[3,2-b]噻吩],PBTTT),引入了一种高效分布转换桥(EDCB)策略。这种创新的方法使忆阻器具有卓越的良率、高拉伸性和可靠的开关性能。通过微调半导体含量,我们将主要电荷载流子从离子转移到电子,实现可调的非易失性和易失性双模忆阻器。这一进步使不同操作机制下的多模态信号处理成为可能——卷积神经网络(cnn)中用于图像识别的非易失性模式和储层计算(RC)中用于动态分类和预测的易失性模式。通过将基于edcb的忆阻器不同的易失性和非易失性模式分别集成到RC的动态神经元网络和线性回归层中,进一步演示了全模拟RC硬件系统,实现了在线心律失常检测任务的高精度。我们的工作为具有机械灵活性的高产有机忆阻器铺平了道路,在集成易失性和非易失性功能的统一忆阻器系统中推进了高效的多模式神经形态计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信